

Product Description

SALSA[®] MLPA[®] Probemixes

P251-C3 NB mix 1 & P252-D1 NB mix 2 & P253-D2 NB mix 3

To be used with the MLPA General Protocol.

Version P251-C3 / P252-D1 / P253-D2

For complete product history see page 16.

Catalogue numbers:

- P251/P252/P253-025R: SALSA® MLPA® Probemixes P251/P252/P253 NB mix 1, 2 & 3, 25 reactions.
- P251/P252/P253-050R: SALSA[®] MLPA[®] Probemixes P251/P252/P253 NB mix 1, 2 & 3, 50 reactions.
- P251/P252/P253-100R: SALSA[®] MLPA[®] Probemixes P251/P252/P253 NB mix 1, 2 & 3, 100 reactions.

SALSA[®] MLPA[®] Probemixes P251 NB mix 1, P252 NB mix 2 and P253 NB mix 3 (hereafter: P251 NB mix 1, P252 NB mix 2 and P253 NB mix 3) are to be used in combination with:

- 1. SALSA® MLPA® Reagent Kit (Cat. No: EK1-FAM, EK1-CY5, EK5-FAM, EK5-CY5, EK20-FAM),
- 2. Data analysis software Coffalyser.Net[™] (Cat. No: n.a.)

Volumes and ingredients

	Volumes		Ingredients
P251/2/3-025R	P251/2/3-025R P251/2/3-050R P251/2/3-100R		ingredients
40 µl	80 µl	160 µl	Synthetic oligonucleotides, oligonucleotides purified from bacteria, Tris-HCl, EDTA

The MLPA probemixes are not known to contain any harmful agents. Based on the concentrations present, none of the ingredients are hazardous as defined by the Hazard Communication Standard. A Safety Data Sheet (SDS) is not required for this product: none of the ingredients contain dangerous substances at concentrations requiring distribution of an SDS (as per Regulation (EC) No 1272/2008 [EU-GHS/CLP] and 1907/2006 [REACH] and amendments).

Storage and handling

Recommended storage conditions	-25°C	类
--------------------------------	-------	---

A shelf life of until the expiry date is guaranteed, when stored in the original packaging under recommended conditions. For the exact expiry date, see the label on the vial. These products should not be exposed to more than 25 freeze-thaw cycles. Do not use these products if the packaging is damaged or opened. Leave chemicals in original containers. Waste material must be disposed of in accordance with the national and local regulations.

Certificate of Analysis

Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lots is available at www.mrcholland.com.

Precautions and warnings

For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mrcholland.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with these products.

General information

SALSA[®] MLPA[®] Probemixes P251/P252/P253 NB mix 1, 2 & 3 are research use only (RUO) assays for copy number determination of several chromosomal regions that frequently show copy number changes in neuroblastoma tumours.

Neuroblastoma (NB) is a relatively common paediatric cancer that usually occurs sporadically and frequently originates from one of the adrenal glands. NB is characterized by striking clinical heterogeneity, including cases that show spontaneous tumour regression. NB accounts up to 10% of all paediatric cancers. Several acquired genetic alterations such as amplification of the *MYCN* oncogene, deletions of chromosome bands 1p36 and 11q23 and unbalanced gains of 17q regions have been well-characterized and show correlation with tumour behaviour, including response to treatment. For review please see e.g. Ambros et al. (2009) and Ahmed et al. (2017).

These products are not CE/FDA registered for use in diagnostic procedures. The SALSA® MLPA® technique is covered by US patent 6,955,901 and corresponding patents outside the US. The purchase of this product includes a license to use only this amount of product solely for the purchaser's own use.

Probemix content

P251-C3 NB mix 1 contains 49 probes, including 36 probes for chromosomes 1, 3 and 11. P252-D1 NB mix 2 contains 49 probes, including 34 probes for chromosomes 2 (*MYCN* region) and 17. P253-D2 NB mix 3 contains 47 probes, including 33 probes for chromosomes 4, 7, 9, 12 and 14. In addition, 13 reference probes are included in P251, 15 in P252 and 14 in P253 that target relatively copy number stable regions in various cancer types including NB. However, it should be noted that NB karyotypes can harbour multiple numerical and structural aberrations, which can complicate interpretation of these reference probes. Partial probe sequences and the identity of the genes detected by the reference probes are available online (www.mrcholland.com).

The P251 probemix contains probes for chromosomes 1, 3 and 11:

- 1p36: Deletion of the 1p36 region is present in 20-40% of NB patients and is often associated with MYCN amplification in ~70% of the cases (Huang and Weiss 2013). A probe for tumour suppressor gene CHD5 at 1p36 is included.
- **3p21-p22**: 3p deletions are a hallmark of NB patients and appear to correlate with older age at diagnosis. This region contains various tumour suppressor genes, including *RASSF1* (Hoebeeck J et al. 2006; Van Roy et al. 2009;).
- **11q**: Deletions of the 11q arm, and in particular 11q23, are common in NB patients and are associated with a higher disease stage and poor prognosis (Mlakar V et al. 2017)

The P252 probemix contains probes for chromosomes 2 and 17:

- 2p24: Amplification of the proto-oncogene *MYCN* is found in 20-30% of all NBs and it correlates with poor prognosis. *MYCN* amplified tumours follow a very aggressive course and are associated with additional structural abnormalities in particular with loss of 1p, 11q, and gain of 17q. *MYCN* amplification is often used for identification of high-risk NB patients, and is also one of the most commonly mutated genes in retinoblastoma (RB) after the *RB1* gene. *MYCN* is amplified in approximately 1-9 % of all RB tumors (Vempuluru VS et al. 2024). Additional probes for the nearby *NBAS*, *DDX1* and *ALK* genes are included.
- **2q33**: Loss of 2q33 has been reported in NBs and has been associated with loss of expression of *CASP8* (Takita J et al. 2001).
- **17p**: Gains of the 17p probes together with gains of the 17q probes would indicate complete chromosome 17 gains, in contrast to the frequent unbalanced 17q gains that are often associated with translocations. Three probes for *TP53* have been included although *TP53* mutations and deletions might be rare in NBs.
- 17q: 17q gain is present in more than 50% of NB cases and is associated with a poor outcome. Several studies showed that the most common frequent sites of 17q translocations are 1p and 11q. Whole chromosome 17 gain is typically seen in near-triploid tumours with favourable prognosis (Mlakar V et al. 2024). <u>Please note</u> that triploidy of all chromosomes cannot be determined with these assays as only *relative* gains or losses are detected.

The P253 probemix contains probes for chromosomes 4, 7, 9, 12 and 14:

• Partial copy number alterations of chromosomes 4, 7, 9, 12 and 14 have been described in NBs. Probes for *CDKN2A* and *PTPRD* on chromosome 9 have been included as *CDKN2A* undergoes (often biallelic)

deletion in many cancer types, and the *PTPRD* gene has also been identified as a candidate tumour suppressor gene in NB (Carén H et al. 2008)

Each probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mrcholland.com.

Length (nt)	Name
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)
88-96	D-fragments (low signal indicates incomplete denaturation)
92	Benchmark fragment
100	X-fragment (X chromosome specific)
105	Y-fragment (Y chromosome specific)

MLPA technique

The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mrcholland.com). More information on the use of MLPA in tumour applications can be found in Hömig-Hölzel and Savola (2012).

MLPA technique validation

Internal validation using 16 different DNA samples from healthy individuals is required, in particular when using MLPA for the first time, or when changing the sample type or the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens

Extracted DNA, which includes DNA derived from formalin-fixed, paraffin-embedded (FFPE) tissues, free from impurities known to affect MLPA reactions. MRC Holland has tested and can recommend the following extraction methods:

- QIAGEN Autopure LS (automated) and QIAamp DNA mini/midi/maxi kit (manual)
- Promega Wizard Genomic DNA Purification Kit (manual)
- Salting out (manual)

All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol. More information on the use of FFPE tissue samples for MLPA can be found in Atanesyan et al. (2017).

Reference samples

A sufficient number (\geq 3) of different reference samples from unrelated individuals should be included in each MLPA experiment for data normalisation. Reference samples should be derived from healthy individuals without a history of cancer. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol (www.mrcholland.com).

P252 competitor mix information

Samples with very high levels of *MYCN* amplification exhibit very high signals for the *MYCN* probes and low signals for other probes, making it difficult to analyse the latter. Therefore, the P252 probemix is shipped together with a vial of CM002 (P252 competitor mix). When a sample shows a very high level of *MYCN* amplification it can be retested with the competitor mix. This competitor mix contains oligonucleotides that can be included at the start of the MLPA reaction. Adding the competitors specifically reduces the signal of the eight *MYCN* region probes, making it possible to examine changes in other genes/chromosomal areas.

Instructions for use:

- 1. Denature 4 μl sample DNA by heating 5 minutes at 98°C.
- 2. Add 1.5 µl MLPA Buffer + 1.5 µl P252 probemix + 1 µl of P252 competitor mix.

3. Continue with the MLPA protocol starting with one minute incubation at 95°C and 16 hour incubation at 60°C followed by the ligation and PCR steps.

Positive control DNA samples

MRC Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/) have diverse collections of biological resources which may be used as positive control DNA samples in your MLPA experiments. Sample ID numbers listed in the table below from the Coriell Institute have been tested with P251-C3, P252-D1 and P253-D2 probemixes at MRC Holland and can be used as positive control samples to detect copy number alterations (CNAs) mentioned below. The quality of cell lines can change; therefore samples should be validated before use.

Sample name	Chromosomal position of CNA (hg18)*	Altered target genes in P251-C3 NB mix 1	Expected CNA
NA22977	1026.00	GABRD	
NA18827	1p36.33	GABRD	Heterozygous deletion
NA22995	1p36.32-p36.33	GABRD, TP73	Heterozygous deletion
NA22991	1030.32-030.33	GABRD, 1775	Heterozygous deletion
NA50276	1p36.22-p36.31	CHD5, PARK7, KIF1B	Heterozygous deletion
NA17941	1q21.3-q44	CKS1B, LHX4, LIN9, AKT3	Heterozygous duplication
NA06038	1~25.2	LHX4	Hotorozygous deletion
NA00214	1q25.2		Heterozygous deletion
NA05347	1q42.12-q44	LIN9, AKT3	Heterozygous duplication
NA06473	1q44	AKT3	Heterozygous deletion
NA03503	0505.0	VHL	Listorozygouo duplication
NA10985	3p25.3	VAL	Heterozygous duplication
NA04127	3p21.31-p25.3	VHL, TGFBR2, CTNNB1, SEMA3B, RASSF1, ZMYND10	Heterozygous duplication
NA08778	3q21.1	CASR	Heterozygous deletion
NA03563	3q21.1-q26.32	CASR, ZIC1, PIK3CA	Heterozygous duplication
NA11428			
NA20022	3q24-q26.32	ZIC1, PIK3CA	Heterozygous duplication
NA10175	3q26.32	PIK3CA	Heterozygous duplication
NA09709	11p13	CD44	Heterozygous deletion
NA22633	11p11.2	PTPRJ	Heterozygous deletion
NA00959	11q13.2-q23.3	GSTP1, CNTN5, CASP1, ATM, CADM1, KMT2A, HMBS, THY1	Heterozygous duplication
NA15099	11q22.1-q23.3	CNTN5, CASP1, ATM, CADM1, KMT2A, HMBS, THY1	Heterozygous duplication
NA09596	11,00,1,000,0	CNITNE CAODI ATM	Heterozygous deletion
NA08618	11q22.1-q22.3	CNTN5, CASP1, ATM	Heterozygous duplication

Sample name	Chromosomal position of CNA (hg18)*	Altered target genes in P252-D1 NB mix 2	Expected CNA
NA00501	2p25.3	TMEM18	Heterozygous deletion
NA10401	2p25.3-q33.1	TMEM18, TPO, NBAS, DDX1, MYCN, ALK, RTN4, DYSF, RPIA, SCN1A, CFLAR, CASP8, BMPR2	Heterozygous duplication
NA10951	2p25.3	TPO	Heterozygous duplication
NA00945	2p24.3	NBAS, DDX1, MYCN	Heterozygous deletion
NA09216	2p24.3	NBAS, DDX1, MYCN	Heterozygous deletion
NA10607	2q24.3	SCN1A	Heterozygous deletion
NA11213	2q33.1	CFLAR, CASP8, BMPR2	Heterozygous deletion
NA01229	2433.1	CFLAR, CASPO, DIMPRZ	Heterozygous duplication
NA06047	17p13.3	PAFAH1B1	Heterozygous deletion
NA13031	17q21.33	TOB1	Heterozygous deletion
NA16445	17q25.3	BIRC5, SECTM1, TBCD	Heterozygous duplication
Sample name	Chromosomal position of CNA (hg18)*	Altered target genes in P253-D2 NB mix 3	Expected CNA
NA10947	4p15.31-p16.3	SPON2, WSF1, KCNIP4	Heterozygous duplication
NA03435	4p15.31-p16.3	SPON2, WSF1, KCNIP4	Heterozygous deletion
NA00782	4q13.2-q27	GNRHR, IL2	Heterozygous duplication
NA00501	4q27-q35.2	IL2, GLRB, KLKB1	Heterozygous duplication
NA10313	4q32.1-q35.2	GLRB, KLKB1	Heterozygous duplication
NA10313	7q36.3	SHH	Heterozygous deletion
NA03013	4q32.1-q35.2	GLRB, KLKB1	Heterozygous deletion
NA07081	7p11.2-p15.1	GHRHR, EGFR	Heterozygous duplication
NA08763	7p15.1	GHRHR	Heterozygous deletion
NA12590	7q11.23	ELN	Heterozygous deletion
NA02819	9p13.3-p24.1	PTPRD, CDKN2A, DNAI1	Heterozygous duplication
NA14946	9p23-p24.1	PTPRD	Heterozygous deletion
11A 14940	12p13.33	ERC1	Heterozygous duplication
NA13685	9q34.13	POMT1, TSC1	Heterozygous duplication
NA08035	12p11.21-p13.33	ERC1, CDKN1B, PKP2	Heterozygous duplication
NA10074	14q13.2-q32.12	NFKBIA, ATL1, TGFB3, MOAP1	Heterozygous duplication
NA09888	14q22.1	ATL1	Heterozygous deletion

* Indicated chromosomal bands accommodate genes targeted by MLPA probes, however, the whole extent of CNAs present in these cell lines cannot be determined by the P251-C3/P252-D1/P253-D2 NB mix 1, 2 & 3 probemixes.

Data analysis

Coffalyser.Net should be used for data analysis in combination with the appropriate lot-specific Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net is freely downloadable at www.mrcholland.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results

The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 . When this criterion is fulfilled, the following cut-off values for the final ratio (FR) of the probes can be used to interpret MLPA results for autosomal chromosomes or pseudo-autosomal regions:

Copy number status	Final ratio (FR)
Normal	0.80 < FR < 1.20
Homozygous deletion	FR = 0
Heterozygous deletion	0.40 < FR < 0.65
Heterozygous duplication/gain	1.30 < FR < 1.65
Heterozygous triplication/homozygous duplication/gain	1.75 < FR < 2.15
Ambiguous copy number	All other values

Note: The term "dosage quotient", used in older product description versions, has been replaced by "final ratio" to become consistent with the terminology of Coffalyser.Net (Calculations, cut-offs and interpretation remain unchanged.) Please note that Coffalyser.Net also shows arbitrary borders as part of the statistical analysis of results obtained in an experiment. As such, arbitrary borders are different from the final ratio cut-off values shown here above.

Please note that these above mentioned final ratios are only valid for germline testing. Final ratios are affected both by percentage of tumour cells and by possible subclonality.

- <u>Arranging probes</u> according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in subclonal cases.
- <u>False positive results</u>: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Sequence changes (e.g. single nucleotide variants (SNVs), point mutations) in the target sequence detected by a probe can be one cause. Incomplete DNA denaturation (e.g. due to salt contamination in the DNA sample) can also lead to a decreased probe signal, in particular for probes located in or near a GC-rich region. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- <u>Normal copy number variation</u> in healthy individuals is described in the database of genomic variants: <u>http://dgv.tcag.ca/dgv/app/home</u>. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- <u>Not all abnormalities detected by MLPA are pathogenic</u>. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- <u>Copy number changes detected by reference probes</u> are unlikely to have any relation to the condition tested for.
- False results can be obtained if one or more peaks are off-scale. For example, a duplication of one or more exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun the PCR products using either: a lower injection voltage or a shorter injection time, or a reduced amount of sample by diluting PCR products.

P251/P252/P253 specific notes

- In samples from tumour tissues, reference probes are more prone to have deviating copy number results as compared to blood-derived germline samples. When regions targeted by reference probes are affected by CNAs, it can help to turn the slope correction off in Coffalyser.Net analysis to get the correct copy number interpretation on the target region.
- Probes in chromosomes 1, 2, 3, 4, 7, 9, 11, 12, 14 and 17 are included in the probemixes to help determine the extent of a deletion/duplication. CNAs of single probes might not always be related to the condition tested.

Limitations of the procedure

- Small (point) mutations and structural rearrangements occurring in NB will not be detected by P251-C3, P252-D1 and P253-D2 NB mix 1, 2 & 3.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region do exist but remain undetected.
- Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can cause false positive results. Mutations/SNVs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.
- MLPA analysis on tumour samples provides information on the *average* situation in the cells from which the DNA sample was purified. Gains or losses of genomic regions or genes may not be detected if the percentage of tumour cells is low. In addition, subclonality of the aberration affects the final ratio of the corresponding probe. Furthermore, there is always a possibility that one or more reference probes *do* show a CNA in a patient sample, especially in solid tumours with more chaotic karyotypes.

Confirmation of results

Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism in sequence data indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

COSMIC mutation database

http://cancer.sanger.ac.uk/cosmic. We strongly encourage users to deposit positive results in the COSMIC Database. Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report false-positive results due to SNVs and unusual results to MRC Holland: info@mrcholland.com.

Table 1. P251-C3 NB mix 1

Length		Chromosomal position (hg18)					
(nt)	MLPA probe	Reference	Chr 1	Chr 3	Chr 11		
64-105	Control fragments - see table in probem	ix content section f	or more information	·			
125	Reference probe 21195-L25924	21q22					
132 *	CKS1B probe 23419-L33193		1 q 21.3				
138	Reference probe 00797-L30622	5q31					
142	DENND2B probe 06679-L06257				11p15.4		
149	HMBS probe 01662-L30621				11 q 23.3		
155	Reference probe 04566-L03955	16q13					
160	PLPP3 probe 02876-L02343		1p32.2				
166	GABRD probe 04690-L07966		1p36.33				
172	GSTP1 probe 06819-L07011				11 q 13.2		
178	Reference probe 04858-L04242	5p13					
184 #	CASP1 probe 00559-L00128				11 q 22.3		
190	PTPRJ probe 05918-L05363				11p11.2		
196	TGFBR2 probe 03861-L03610			3p24.1			
203 *	Reference probe 12424-L32340	22q12					
211	PIK3CA probe 03826-L03222			3 q 26.32			
220	KIF1B probe 04682-L04060		1p36.22				
226 *	Reference probe 20828-L28843	8q13					
232	LMO1 probe 16712-L19296				11p15.4		
238	CADM1 probe 01640-L01178				11 q 23.2		
247	Reference probe 07695-L07419	21q22					
254	ABCC8 probe 21876-L30842				11p15.1		
259 ¥	LMO1 probe 23420-L19293				11p15.4		
266 ±	CD44 probe 02245-L30511				11p13		
274	LHX4 probe 07233-L06883		1 q 25.2				
283	ROBO2 probe 06447-L05973			3p12.3			
292	Reference probe 04224-L03560	19q13					
301	CNTN5 probe 08313-L08182				11 q 22.1		
310 *	Reference probe 00871-L00461	13q34					
320	LIN9 probe 12058-L03618		1 q 42.12				
327 «	TP73 probe 01682-L01262		1p36.32				
337	ATM probe 02664-L02131				11 q 22.3		
348 *	Reference probe 16441-L18894	18q21					
355	PTAFR probe 02267-L01425		1p35.3				
364	SEMA3B probe 03210-L02625			3p21.31			
373	Reference probe 03919-L03374	15q21					
382	AKT3 probe 21295-L30115		1 q 44				
396	ZIC1 probe 08544-L30513			3 q 24			
404	RASSF1 probe 03991-L30512			3p21.31			
409	THY1 probe 04777-L04125				11 q 23.3		
418 #	VHL probe 01161-L00717			3p25.3			
427	KMT2A probe 01637-L01175				11 q 23.3		
436	PARK7 probe 02188-L01686		1p36.23		-		
445	ZMYND10 probe 03207-L02622			3p21.31			
454	CTNNB1 probe 00673-L00117			3p22.1			
463	NTNG1 probe 16354-L06009		1p13.3				
475	Reference probe 12066-L13192	20q13					
484	CASR probe 02683-L02148			3 q 21.1			
496	CHD5 probe 09114-L25958		1p36.31	· ·			
504	Reference probe 21229-L30802	10p11					

* New in version C3.

¥ Changed in version C3. Minor alteration, no change in sequence detected.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \pm SNP rs55707108 could influence the probe signal at 266 nt. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

Table 2. P252-D1 NB mix 2

Length	MLPA probe	Chro	Chromosomal position (hg18)			
(nt)		Reference	Chr 2	Chr 17		
64-105	Control fragments – see table in probemix	content section for more	e information			
125	Reference probe 21195-L25924	21q22				
131	TMEM18 probe 06296-L25684		2p25.3			
136	TP53 probe 08304-L01158			17p13.1		
142 «	CFLAR probe 00663-L00074		2 q 33.1			
148	Reference probe 05170-L21820	13q12				
155	Reference probe 04566-L03955	16q13				
160	TBCD probe 08306-L01293			17 q 25.3		
168	NF1 probe 02514-L30629			17 q 11.2		
173	SGCA probe 03373-L30630			17 q 21.33		
178	Reference probe 04858-L04242	5p13				
184	ERBB2 probe 00991-L00146			17 q 12		
190	NBAS probe 08317-L08186		2p24.3			
195	BMPR2 probe 12059-L09026		2 q 33.1			
202 +	Reference probe 10697-L12697	6p12				
213	NBAS probe 21789-L30625		2p24.3			
220	RECQL5 probe 04170-L03525			17 q 25.1		
226	WSB1 probe 05736-L31080			17 q 11.1		
232 #	PAFAH1B1 probe 04605-L30632			17p13.3		
239	SCN1A probe 04543-L03932		2 q 24.3			
247	Reference probe 07695-L07419	21q22				
257	TOP2A probe 01055-L00628			17 q 21.2		
265	CASP8 probe 02761-L02210		2 q 33.1			
274	DDX1 probe 08319-L08188		2p24.3			
283 ± #	RPIA probe 05713-L05151		2p11.2			
292	Reference probe 04224-L03560	19q13				
301	BMPR2 probe 04013-L03436		2 q 33.1			
311 +	Reference probe 06425-L05951	6p22				
319	DDX1 probe 08320-L08189		2p24.3			
333	ALK probe 08322-L30633		2p23.2			
339	TPO probe 11049-L30634		2p25.3			
346	Reference probe 16440-L30623	18q21				
353	MYCN probe 12060-L09025		2p24.3			
361	Reference probe 10086-L20983	8q22				
370	WSB1 probe 08326-L22797			17 q 11.1		
378	Reference probe 03919-L30636	15q21				
384	BIRC5 probe 03025-L02411			17 q 25.3		
391	TOB1 probe 04778-L04126			17 q 21.33		
400	SECTM1 probe 01088-L00647			17 q 25.3		
409	RTN4 probe 00963-L00550		2p16.1			
420	DYSF probe 08839-L13359		2p13.3			
429	Reference probe 12456-L23201	22q12				
436	MYCN probe 03327-L02466		2p24.3			
445	WSB1 probe 08328-L09024			17 q 11.1		
454	TP53 probe 08785-L01159			17p13.1		
465	TP53 probe 00844-L06726			17p13.1		
475	Reference probe 12066-L13192	20q13				
486	ALK probe 15397-L30899		2p23.2			
493	Reference probe 14909-L27536	18p11				
500	Reference probe 21229-L29604	10p11				

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \pm SNP rs554374026 could influence the probe signal at 283 nt. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

+ An article by Costa and Seuánez (2018) reports that the 6p region can be gained in neuroblastoma samples. These two 6p reference probes can be removed from the normalisation calculations when necessary by adjusting the Coffalyser sheet.

These probes' specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only these probes can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

Length			Chromosomal position (hg18)					
(nt)	MLPA probe	Reference	Chr 4	Chr 7	Chr 9	Chr 12	Chr 14	
64-105	Control fragments – see table in prob		on for more i	nformation	1	T		
124 ¥	Reference probe S0864-L26216	21q22				-		
132 *	Reference probe 21566-L33181	18q21				-		
136	SHH probe 06358-L05874			7 q 36.3		-		
142 #	PKP2 probe 12061-L04788					12p11.21		
148	SPON2 probe 21907-L30514		4p16.3					
155	Reference probe 04566-L03955	16q13						
160	TGFB3 probe 21908-L31105						14 q 24.3	
166 * #	CDKN2A probe 23424-L33194				9p21.3			
172	PTPRD probe 08332-L08201				9p24.1			
178	Reference probe 04858-L04242	5p13						
184	TBX5 probe 05687-L05129					12 q 24.21		
189 « #	IMPDH1 probe 21909-L31106			7 q 32.1				
196	GNRHR probe 12062-L04183		4 q 13.2					
203 *	Reference probe 12424-L32340	22q12						
208 ¥	TJP2 probe 22308-L30680				9 q 21.11			
214 *	ATL1 probe 05281-L33195						14 q 22.1	
220	COL2A1 probe 07405-L07052					12 q 13.11		
226 ¥	POMT1 probe 23422-L03486				9 q 34.13			
232 ±	WFS1 probe 05376-L30681		4p16.1					
240	NFKBIA probe 13706-L31107						14 q 13.2	
249 *	Reference probe 16267-L33178	20q11						
254 «	KCNIP4 probe 21878-L16046		4p15.31					
265 ¥	KRIT1 probe 23425-L31108			7 q 21.2				
274	CDKN2A probe 01291-L00835				9p21.3			
283	ERC1 probe 06682-L06260	10.10				12p13.33		
292	Reference probe 04224-L03560	19q13		7 11 0				
303 ±	EGFR probe 05961-L20432	10.04		7p11.2				
310 *	Reference probe 00871-L00461	13q34				10 10 1		
322	CDKN1B probe 02256-L30516		4-00.1			12p13.1		
329	GLRB probe 08956-L30517		4 q 32.1			10-15		
339	MDM2 probe 02894-L20364	500				12 q 15		
352	Reference probe 11653-L22884	5q33		711.00				
360 «	ELN probe 12063-L22813		4-10	7 q 11.23				
368	OCIAD1 probe 12064-L31255	15-01	4p12					
373	Reference probe 03919-L03374	15q21	4-25.0					
382	KLKB1 probe 01136-L00694 MOAP1 probe 00947-L01595		4 q 35.2				14,000 10	
391 400	Reference probe 100947-L01595	8~22					14 q 32.12	
400	TGFBR1 probe 04653-L31256	8q22			0,			
413	GHRHR probe 07215-L13361			7p15.1	9 q 22.33			
421	TSC1 probe 04796-L04171			7015.1	0a24.12			
427 436 ¥	Reference probe 23423-L30802	10p11			9 q 34.13			
436 ¥ 445	IL2 probe 00627-L00183	тортт	4 q 27		-			
445	DNAI1 probe 08059-L07840		4 4 7	-	9p13.3			
454	PTPRD probe 08039-L07840			+	9p13.3 9p23	+		
408	FIFRD Probe 08330-L30882				эрдэ			

Table 3. P253-D2 NB mix 3

Length	MLPA probe	Chromosomal position (hg18)					
(nt)	MEPA probe	Reference	Chr 4	Chr 7	Chr 9	Chr 12	Chr 14
480	Reference probe 12066-L31109	20q13					
490 *	Reference probe 18601-L23958	2q33					

* New in version D2.

¥ Changed in version D2. Minor alteration, no change in sequence detected.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \pm SNVs rs17290162 and rs550975729 could influence the probe signal at 303 nt and 232 nt, respectively. In case of apparent deletions, it is recommended to sequence the region targeted by the probe.

These probes' specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only these probes can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

The identity of the genes detected by the reference probes and their complete probe sequences are available at www.mrcholland.com. Please notify us of any mistakes: info@mrcholland.com.

The probe lengths in the tables above may vary slightly depending on the capillary electrophoresis machine settings. Please see the most up-to-date Coffalyser sheet for exact probe lengths obtained at MRC Holland.

SNVs located in the target sequence of a probe can influence probe hybridisation and/or probe ligation. Please note: not all known SNVs are mentioned in the tables above. Single probe aberration(s) must be confirmed by another method.

Length (nt)	MLPA probe	Gene	Chromosomal band (hg18)	Partial sequence(24 nt adjacent to ligation site)	Distance to next probe	Location (hg18) in kb
			Chro	mosome 1		
166	04690-L07966	GABRD	1p36.33	CGGCGACTACGT-GGGCTCCAACCT	1.6 M b	01-001,946
327 «	01682-L01262	TP73	1p36.32	GAGACCCGGGTG-TCAGGAAAGATG	2.6 M b	01-003,558
496	09114-L25958	CHD5	1p36.31	GTTTCTTCTTCT-TAGGAAGGCTCA	1.8 M b	01-006,151
436	02188-L01686	PARK7	1p36.23	ATGGCGGCTATC-AGGCCCTTCCGG	2.4 M b	01-007,954
220	04682-L04060	KIF1B	1p36.22	CGTGGGGTCCTT-TTGCAGGCCCTC	18.0 M b	01-010,358
355	02267-L01425	PTAFR	1p35.3	CATCTTCATCGT-GTTCAGCTTCTT	28.5 M b	01-028,350
160	02876-L02343	PLPP3	1p32.2	CCCCTTGGACTT-TAGAACGATTTA	50.9 M b	01-056,817
463	16354-L06009	NTNG1	1p13.3	GGATAAGGCTGT-TAAGACCAGCCG	45.5 M b	01-107,669
132 *	23419-L33193	CKS1B	1 q 21.3	TTCTGTTACAGA-CATGTCATGCTG	25.3 M b	01-153,217
274	07233-L06883	LHX4	1 q 25.2	CATGGCCCCGCA-TGGTCCCCTCTC	46.0 M b	01-178,502
320	12058-L03618	LIN9	1 q 42.12	GGCCTTCTCGAT-TTTTTATGACCC	17.4 M b	01-224,521
382	21295-L30115	AKT3	1 q 44	TTGCCTCTGCAG-TCTGTCTGCTAC	-	01-241,876
			Chro	mosome 3	•	
418 #	01161-L00717	VHL	3p25.3	CTAGTCAAGCCT-GAGAATTACAGG	20.5 M b	03-010,166
196	03861-L03610	TGFBR2	3p24.1	CTGTGACAACCA-GAAATCCTGCAT	10.6 M b	03-030,661
454	00673-L00117	CTNNB1	3p22.1	GGCCATGGAACC-AGACAGAAAAGC	9.0 M b	03-041,241
364	03210-L02625	SEMA3B	3p21.31	ACCTGGACAACA-TCAGCAAGCGGG	60.4 kb	03-050,283
404	03991-L30512	RASSF1	3p21.31	TCCTGCAGAAGT-ACTCCTATTGCC	12.8 kb	03-050,343
445	03207-L02622	ZMYND10	3p21.31	AAGACACTGTCT-TGGACTTGGTAG	26.9 M b	03-050,356
283	06447-L05973	ROBO2	3p12.3	GGAAGCTACGTT-TGTGTTGCGAGG	46.3 M b	03-077,230
484	02683-L02148	CASR	3 q 21.1	GCCCAGATGACT-TCTGGTCCAATG	25.1 M b	03-123,485
396	08544-L30513	ZIC1	3 q 24	ATGCACTCTATG-TGTTCAGGAAGC	31.8 M b	03-148,616
211	03826-L03222	PIK3CA	3 q 26.32	ACACGTTCATGT-GCTGGATACTGT	-	03-180,430
			Chro	mosome 11	•	
232	16712-L19296	LMO1	11p15.4	GCCACATTAGAA-CTTCTCCGTCCT	39.0 kb	11-008,203
259 ¥	23420-L19293	LM01	11p15.4	TTCACTCCTGAA-TGTAATTCTAGC	547.8 kb	11-008,242
142	06679-L06257	DENND2B	11p15.4	GCCACCACTAGT-ACCATGAGTCCC	8.6 M b	11-008,789
254	21876-L30842	ABCC8	11p15.1	CACTTCCAGATT-TAACCTGGACCC	17.7 M b	11-017,373
266 ±	02245-L30511	CD44	11p13	CCCGCGCCCTCC-GTTCGCTCCGGA	13.0 M b	11-035,117

Table 4. P251-C3 NB mix 1 target probes arranged according to chromosomal location

SALSA® MLPA® Probemixes P251/P252/P253 NB mix 1, 2 & 3 Page 11 of 17

Length (nt)	MLPA probe	Gene	Chromosomal band (hg18)	Partial sequence(24 nt adjacent to ligation site)	Distance to next probe	
190	05918-L05363	PTPRJ	11p11.2	GGGGAGACAGAT-TCTTCCAATCTC	19.0 M b	11-048,106
172	06819-L07011	GSTP1	11 q 13.2	ACCAGTCCAATA-CCATCCTGCGTC	32.6 M b	11-067,109
301	08313-L08182	CNTN5	11 q 22.1	ATTCTTGTTGCA-TGGAAACACATT	4.7 M b	11-099,684
184 #	00559-L00128	CASP1	11 q 22.3	CCGCACACGTCT-TGCTCTCATTAT	3.3 M b	11-104,406
337	02664-L02131	ATM	11 q 22.3	TTTTTCCGATGC-TGTTTGGATAAA	7.2 M b	11-107,684
238	01640-L01178	CADM1	11 q 23.2	GATCCGGGGAAA-GCAAAACCCGAA	3.0 M b	11-114,881
427	01637-L01175	KMT2A	11 q 23.3	GGACCCCGGATT-AAACATGTCTGC	612.8 kb	11-117,853
149	01662-L30621	HMBS	11 q 23.3	CATCTCTATAGA-GTGGACCTGGTT	329.5 kb	11-118,466
409	04777-L04125	THY1	11 q 23.3	GGCTGTCTTTTT-GTACTTTTTGTT	-	11-118,795

* New in version C3.

¥ Changed in version C3. Minor alteration, no change in sequence detected.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \pm SNV rs55707108 could influence the probe signal at 266 nt. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

Table 5. P252-D1 NB mix 2 target probes arranged according to chromosomal location

Length (nt)	MLPA probe	Gene	Chromosomal band (hg18)	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe	Location (hg18) in kb	
	Chromosome 2						
131	06296-L25684	TMEM18	2p25.3	TCCTCACCTGCT-TGTCCTCCCGAA	773.4 kb	02-000,666	
339	11049-L30634	TPO	2p25.3	GATGACCGCTAT-TCTGACCTCCTG	13.8 M b	02-001,439	
190	08317-L08186	NBAS	2p24.3	GTCCCTCCTGCT-TCCATCTCTGAA	238.6 kb	02-015,237	
213	21789-L30625	NBAS	2p24.3	CTGGTTCTCTGT-GACAATTTGGTT	185.0 kb	02-015,475	
274	08319-L08188	DDX1	2p24.3	TCAAAGCAGAGA-AGTAAAGGAATG	14.7 kb	02-015,660	
319	08320-L08189	DDX1	2p24.3	GTGTCAACTGGA-AAGCTGAACTTA	328.3 kb	02-015,675	
353	12060-L09025	MYCN	2p24.3	CTGTCACCACAT-TCACCATCACTG	0.2 kb	02-016,003	
436	03327-L02466	MYCN	2p24.3	TGCACCCCCACA-GAAGAAGATAAA	13.3 M b	02-016,003	
486	15397-L30899	ALK	2p23.2	TTTCTCTTGGAT-ATATGCCATACC	520.0 kb	02-029,274	
333	08322-L30633	ALK	2p23.2	ATCTCACCTGGA-TAATGAAAGACT	25.3 M b	02-029,794	
409	00963-L00550	RTN4	2p16.1	CTGGAGAGACAT-TAAGAAGACTGG	16.7 M b	02-055,068	
420	08839-L13359	DYSF	2p13.3	TGCCATGAAGCT-GGTGAAGCCCTT	17,0 M b	02-071,767	
283 ± #	05713-L05151	RPIA	2p11.2	TGGTTCTACAAT-TGTCCATGCTGT	77,8 M b	02-088,779	
239	04543-L03932	SCN1A	2 q 24.3	ATAGGCCACATT-CAAAGGATGGAT	35,1 M b	02-166,564	
142 «	00663-L00074	CFLAR	2 q 33.1	TGTCTGTCGGGG-ACTTGGCTGAAC	127,9 kb	02-201,703	
265	02761-L02210	CASP8	2 q 33.1	TGTCCAGCGCTC-GGGCTTTAGTTT	1,1 M b	02-201,831	
195	12059-L09026	BMPR2	2 q 33.1	GGATTTGTTGTT-TTCGAAATCAGA	165,5 kb	02-202,950	
301	04013-L03436	BMPR2	2 q 33.1	TTGAGGATATGC-AGGTTCTCGTGT	-	02-203,115	
		•	Chroi	mosome 17	•		
232 #	04605-L30632	PAFAH1B1	17p13.3	CTGTTCTGCAGA-TATGACCATTAA	5.0 M b	17-002,520	
454	08785-L01159	TP53	17p13.1	TTCCGAGAGCTG-AATGAGGCCTTG	3.1 kb	17-007,515	
136	08304-L01158	TP53	17p13.1	CTGTCCTGGGAG-AGACCGGCGCAC	2.5 kb	17-007,518	
465	00844-L06726	TP53	17p13.1	CATCTACAGTCC-CCCTTGCCGTCC	15.1 M b	17-007,520	
370	08326-L22797	WSB1	17 q 11.1	CTCTTCTCTGTT-GTTGGGTCCGCA	17.2 kb	17-022,645	
226	05736-L31080	WSB1	17 q 11.1	ATTGATGAGGAT-TATCCAGTGCAA	0.8 kb	17-022,663	
445	08328-L09024	WSB1	17 q 11.1	GTCGCATGTCAA-TCCGAAGAGTGA	3.9 M b	17-022,663	
168 #	02514-L30629	NF1	17 q 11.2	TCTTTCCTTCAT-AAGTGACGGCAA	8.5 M b	17-026,612	
184	00991-L00146	ERBB2	17 q 12	GGTGCAGGGCTA-CGTGCTCATCGC	704.6 kb	17-035,118	

Length (nt)	MLPA probe	Gene	Chromosomal band (hg18)	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe	Location (hg18) in kb
257	01055-L00628	TOP2A	17 q 21.2	AAGCCCTTCAAT-GGAGAAGATTAT	9.8 M b	17-035,823
173	03373-L30630	SGCA	17 q 21.33	CCATGTTCAATG-TGCACACAGGTG	688.5 kb	17-045,608
391	04778-L04126	TOB1	17 q 21.33	TGTCAACATTTT-TGGTGAAGAACT	24.8 M b	17-046,296
220	04170-L03525	RECQL5	17 q 25.1	GGCTGCAAATGT-TGTGGTCAAGTG	2.6 M b	17-071,136
384	03025-L02411	BIRC5	17 q 25.3	GCATTCGTCCGG-TTGCGCTTTCCT	4.1 M b	17-073,724
400	01088-L00647	SECTM1	17 q 25.3	TCTTCATCCTCT-TGGTCGCTCTGG	577.8 kb	17-077,874
160	08306-L01293	TBCD	17 q 25.3	ACACGCAGCCAA-TGATAGACCACC	-	17-078,452

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \pm SNV rs554374026 could influence the probe signal at 283 nt. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

These probes' specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only these probes can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

Length (nt)	MLPA probe	Gene	Chromosomal band (hg18)	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe	Location (hg18) in kb
			Chro	omosome 4		· - ·
148	21907-L30514	SPON2	4p16.3	CTTCCCCAAGCA-GTACCCCCTGTT	5.2 M b	04-001,156
232 ±	05376-L30681	WFS1	4p16.1	CTCAATGCCACA-GCCTCGTTGGAG	15.2 M b	04-006,330
254 «	21878-L16046	KCNIP4	4p15.31	GTGGAAAGCATT-TCGGCTCAGCTG	27.0 M b	04-021,559
368	12064-L31255	OCIAD1	4p12	ATGCTTCCTCAT-TATGAGCCAATT	19.8 M b	04-048,549
196	12062-L04183	GNRHR	4 q 13.2	TGGAACATTACA-GTCCAATGGTAT	55.3 M b	04-068,302
445	00627-L00183	IL2	4 q 27	ACAATGTACAGG-ATGCAACTCCTG	34.7 M b	04-123,597
329	08956-L30517	GLRB	4 q 32.1	TATTGCTTGCCT-TCTCTTTGGGTT	29.1 M b	04-158,293
382	01136-L00694	KLKB1	4 q 35.2	ATGCCCAATACT-GCCAGATGAGGT	-	04-187,390
			Chro	omosome 7		
421	07215-L13361	GHRHR	7p15.1	TTCCTCAACCAA-GAGGTGTGTGAT	24.2 M b	07-030,983
303 ±	05961-L20432	EGFR	7p11.2	TCATGGGAGAAA-ACAACACCCTGG	17.9 M b	07-055,201
360 «	12063-L22813	ELN	7 q 11.23	ACCTCATCAACG-TTGGTGCTACTG	18.6 M b	07-073,121
265 ¥	23425-L31108	KRIT1	7 q 21.2	CAATCCAAACCT-TTTAAATGGACA	36.1 M b	07-091.694
189 « #	21909-L31106	IMPDH1	7 q 32.1	GGGGCCTCCGTA-GTGGCGGCCAGC	27.5 M b	07-127,822
136	06358-L05874	SHH	7 q 36.3	CAAGGCACATAT-CCACTGCTCGGT	-	07-155,292
			Chro	omosome 9		
172	08332-L08201	PTPRD	9p24.1	CACAAGGGAGCA-TCATACGTCTTC	1.5 M b	09-008,476
468	08330-L30682	PTPRD	9p23	TAGAGGTGTCTG-ACTGACAGCATG	12.0 M b	09-009,929
274	01291-L00835	CDKN2A	9p21.3	TGAAAGAACCAG-AGAGGCTCTGAG	2.9 kb	09-021,958
166 * #	23424-L33194	CDKN2A	9p21.3	GCGTCGTGCACG-GGTCGGGTGAGA	12.5 M b	09-021,961
454	08059-L07840	DNAI1	9p13.3	ACTGAAGTGGAA-GAGAGTCCAGAT	36.6 M b	09-034,449
208 ¥	22308-L30680	TJP2	9 q 21.11	CGTTTTTTATAA-GAAGCCACTTTG	29.9 M b	09-071,041
413	04653-L31256	TGFBR1	9 q 22.33	GATGGGTCAGAA-GGTACAAGATCA	32.4 M b	09-100,950
226 ¥	23422-L03486	POMT1	9 q 34.13	GGAGCTCCACTT-TTCTCATTGTGC	1.4 M b	09-133,373
427	04796-L04171	TSC1	9 q 34.13	ACCCAGCAAGTC-TGTCGACTGGAC	-	09-134,770
	Chromosome 12					
283	06682-L06260	ERC1	12p13.33	GAACGGGACAAT-GCAGAACTGCAG	11.3 M b	12-001,470
322	02256-L30516	CDKN1B	12p13.1	GACTCCGACGCC-GGCAAGGTTTGG	20.1 M b	12-012,762
142 #	12061-L04788	PKP2	12p11.21	GAAGATGTGACG-GACTCATTGACT	13.8 M b	12-032,868
220	07405-L07052	COL2A1	12 q 13.11	CACAGGGTCCTT-CTGGAGACCAAG	20.8 M b	12-046,657
339	02894-L20364	MDM2	12 q 15	CGAGATCCTGCT-GCTTTCGCAGCC	45.8 M b	12-067,488
184	05687-L05129	TBX5	12 q 24.21	GCCTGACGCAAA-AGACCTGCCCTG	-	12-113,326
	Chromosome 14					

Table 6. P253-D2 NB mix 3 target probes arranged according to chromosomal location

Length (nt)	MLPA probe	Gene	Chromosomal band (hg18)	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe	Location (hg18) in kb
240	13706-L31107	NFKBIA	14 q 13.2	CTACCAGGGCTA-TTCTCCCTACCA	15.2 M b	14-034,941
214 *	05281-L33195	ATL1	14 q 22.1	GTGGCTGAATCT-CTCAAAGTTGAC	25.4 M b	14-050,128
160	21908-L31105	TGFB3	14 q 24.3	TGCACCCAGGAA-AACACCGAGTCG	17.2 M b	14-075,517
391	00947-L01595	MOAP1	14 q 32.12	GTCTTGCAGGCT-GCTGGACCTCGG	-	14-092,720

* New in version D2.

¥ Changed in version D2. Minor alteration, no change in sequence detected.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \pm SNVs rs17290162 and rs550975729 could influence the probe signal at 303 nt and 232 nt, respectively. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

These probes' specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only these probes can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

SNVs located in the target sequence of a probe can influence probe hybridisation and/or probe ligation. Please note: not all known SNVs are mentioned in the tables above. Single probe aberration(s) must be confirmed by another method.

Related products

For related products, see the product pages on our website: P251, P252, P253.

References

- Ahmed AA et al. (2017). Neuroblastoma in children: Update on clinicopathologic and genetic prognostic factors. *Pediatr Hematol Oncol.* 34:165-85.
- Ambros PF et al. (2009). International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. *Br J Cancer*. 100:1471-82.
- Atanesyan L et al. (2017). Optimal fixation conditions and DNA extraction methods for MLPA analysis on FFPE tissue-derived DNA. *Am J Clin Pathol*. 147:60-8.
- Carén H et al. (2008). High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: Four cases of homozygous deletions of the CDKN2A gene. *BMC Genomics*. 9:353.
- Hoebeeck J et al. (2007). High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors. *Int J Cancer*. 120:533-8.
- Hömig-Hölzel C and Savola S. (2012). Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. *Diagn Mol Pathol*. 21:189-206.
- Huang M and Weiss WA (2013). Neuroblastoma and MYCN. Cold Spring Harb Perspect. 3:a014415.
- Mlakar V et al. (2017). 11q deletion in neuroblastoma: a review of biological and clinical implications. *Mol Cancer*. 16:114.
- Mlakar V et al. (2024). 17q Gain in Neuroblastoma: A Review of Clinical and Biological Implications. *Cancers (Basel)*. 16:338.
- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Hum Mutat.* 28:205.
- Takita et al. (2001). Allelic imbalance on chromosome 2q and alterations of the caspase 8 gene in neuroblastoma. *Oncogene*. 20:4424-32.
- Van Roy et al. (2009). The emerging molecular pathogenesis of neuroblastoma: implications for improved risk assessment and targeted therapy. *Genome Med.* 1:74.

- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.
- Vempuluru VS et al. (2024). Role of MYCN in retinoblastoma: a review of current literature. *Surv Ophthalmol.* 69:697-706.

Selected publications using P251/P252/P253 NB mix 1, 2 & 3

- Ambros IM et al. (2011). A multilocus technique for risk evaluation of patients with neuroblastoma. *Clin Cancer Res.* 17:792-804.
- Ambros PF et al. (2009). International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. *Br J Cancer*. 100:1471-82.
- Bagci O et al. (2012). Copy number status and mutation analyses of anaplastic lymphoma kinase (*ALK*) gene in 90 sporadic neuroblastoma tumors. *Cancer Lett*. 317:72-7.
- Bagci O et al. (2022). Chromosome 1p status in neuroblastoma correlates with higher expression levels of miRNAs targeting neuronal differentiation pathway. *In Vitro Cell Dev Biol Anim.* 59:100-8.
- Berbegall AP et al. (2018). Heterogeneous *MYCN* amplification in neuroblastoma: a SIOP Europe Neuroblastoma Study. *Br J Cancer*. 118:1502-12.
- Chang YH et al. (2024). Higher tumor mutational burden is associated with inferior outcomes among pediatric patients with neuroblastoma. *Pediatr Blood Cancer*. 71:e31176.
- Combaret V et al. (2011). Determination of 17q gain in patients with neuroblastoma by analysis of circulating DNA. *Pediatr Blood Cancer*. 56:757-61.
- Costa RA and Seuánez H. (2018). Investigation of major genetic alterations in neuroblastoma. *Mol Biol Rep.* 45:287.
- Defferrari R et al. (2015). Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without *MYCN* amplification. *Br J Cancer*. 112:290-5.
- Feinberg-Gorenshtein G et al. (2009). Reduced levels of miR-34a in neuroblastoma are not caused by mutations in the TP53 binding site. *Genes Chromosom Cancer*. 48:539-43.
- Feinberg-Gorenshtein G et al. (2013). MiR-192 directly binds and regulates Dicer1 expression in neuroblastoma. *PloS One*. 8:e78713.
- López-Carrasco A. et al. (2021). Intra-Tumour Genetic Heterogeneity and Prognosis in High-Risk Neuroblastoma. *Cancers (Basel)*. 13:5173.
- Manor E et al. (2012). Metastatic neuroblastoma of the mandible: a cytogenetic and molecular genetic study. *Eur Arch Otorhinolaryngol*. 269:1967-71.
- Mazzocco K et al. (2015). Genetic abnormalities in adolescents and young adults with neuroblastoma: A report from the Italian Neuroblastoma group. *Pediatr Blood Cancer*. 62:1725-32.
- Price EA et al. (2021). *MYCN* amplification levels in primary retinoblastoma tumors analyzed by Multiple Ligation-dependent Probe Amplification. *Ophthalmic Genet.* 42:604-11.
- Thompson D et al. (2016). Identification of patient subgroups with markedly disparate rates of *MYCN* amplification in neuroblastoma: A report from the International Neuroblastoma Risk Group project. *Cancer.* 122:935-45.
- Tumer S et al. (2016). The detection of genetic parameters for prognostic stratification of neuroblastoma using Multiplex Ligation-Dependent Probe Amplification technique. *Genet Test Mol Biomarkers*. 20:74-80.
- Villamón E et al. (2011). Comparative study of MLPA-FISH to determine DNA copy number alterations in neuroblastic tumors. *Histol Histopathol*. 26:343-50.
- Villamon E et al. (2013). Genetic instability and intratumoral heterogeneity in neuroblastoma with *MYCN* amplification plus 11q deletion. *PLoS One*. 8:e53740.

SALSA®

P251 prod	P251 product history		
Version	Modification		
C3	One probe on chromosome 1 and four reference probes have been replaced, and one probe has a change in length but not in the sequence detected.		
C2	Three new reference probes have been added and two have been replaced, and multiple probes have a change in length but not in the sequence detected.		
C1	Two new LMO1 specific probes and new QDX fragments (QDX2) have been included.		
B1	Several probes have been replaced and extra X- and Y-control fragments have been added. In addition, new reference probes have been included.		
A1	First release.		

P252 prod	P252 product history		
Version	Modification		
D1	Five new reference probes have been added and two have been replaced, and multiple probes have a change in length but not in the sequence detected.		
C1	One probe for 2p telomere and an extra ALK specific probe have been added.		
B1	Several probes have been replaced and extra X- and Y-control fragments have been added. In addition, new reference probes have been included.		
A1	First release.		

P253 prod	P253 product history		
Version	Modification		
D2	Two target and five reference probes have been replaced, and multiple probes have a change in length but not in the sequence detected.		
D1	Four new reference probes have been added and two have been replaced, and multiple probes have a change in length but not in the sequence detected.		
C1	One NFKBIA specific probe has been replaced.		
B1	Several probes have been replaced and extra X- and Y-control fragments have been added. In addition, new reference probes have been included.		
A1	First release.		

Implemented changes in the product description

Version C3/D1/D2-01 - 16 June 2025(05P)

- Product description rewritten and adapted to a new template.
- Product description adapted to new product versions (version number changed for P251 and P253, changes in Table 1, 3, 4 and 6).

- New references added.

- Information about positive control DNA samples updated.

- Warnings about denaturation-sensitivity removed for several probes.

- Warnings added to Tables 1 – 3 about probe specificity relying on a single nucleotide difference between target gene and related gene or pseudogene.

Version C2/D1/D1-04 - 31 January 2023 (04P)

- Corrections made in the positive sample table on page 4: NA10985 has a heterozygous deletion of VHL, instead of a duplication and one typo corrected.

Version C2/D1/D1-03 - 30 June 2022 (04P)

- Product description rewritten and adapted to a new template.
- For uniformity, the chromosomal locations and bands in this document are now all based on hg18 (NCBI36).
- New warnings for SNPs influencing probe signals added and salt warnings adjusted based on newest data in Tables 1 to 6.

- Gene name of ST5 updated to DENND2B.
- Information about positive control DNA samples added.
- New references added.
- Related probemixes section updated.

More information: www.mrcholland.com; www.mrcholland.eu		
	MRC Holland bv; Willem Schoutenstraat 1 1057 DL, Amsterdam, The Netherlands	
E-mail	info@mrcholland.com (information & technical questions) order@mrcholland.com (orders)	
Phone	+31 888 657 200	

MRC Holland, SALSA, MLPA, digitalMLPA, Coffalyser.Net, Coffalyser digitalMLPA, and their logos are trademarks or registered trademarks of MRC Holland BV. All other brands and names herein are the property of their respective owners.