

Product Description

SALSA® MLPA® Probemix P483-A1 HER gene family

To be used with the MLPA General Protocol.

Version A1. For complete product history see page 10.

Catalogue numbers:

- P483-025R: SALSA MLPA Probemix P483 HER gene family, 25 reactions.
- P483-050R: SALSA MLPA Probemix P483 HER gene family, 50 reactions.
- P483-100R: SALSA MLPA Probemix P483 HER gene family, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mrcholland.com).

Certificate of Analysis

Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mrcholland.com.

Precautions and warnings

For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mrcholland.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information

The SALSA MLPA Probemix P483 HER gene family is a **research use only (RUO)** assay for the detection of deletions or duplications in the HER family of receptor tyrosine kinases. This gene family is comprised of four members promoting cell proliferation, motility and invasion via signalling through homo- or heterodimerization: *EGFR* (*ERBB1/HER1*), *ERBB2* (*HER2*), *ERBB3* (*HER3*), and *ERBB4* (*HER4*) (Sergina and Moasser, 2007).

Amplifications in the Human Epidermal Growth Factor Receptor (HER) gene family are associated with a high invasiveness of human cancers, most notably in breast cancer (Gan et al, 2013; Sergina and Moasser, 2007). As transmembrane proteins, the products of these genes are suitable targets for anticancer drugs. For example, breast cancer patients with tumours overexpressing Her2 (20-30% of breast tumours; Mitri et al. 2012) are treated with trastuzumab (Herceptin), which impairs receptor signalling by binding to its extracellular domain.

EGFR amplifications have been observed in a variety of cancers, including glioblastomas and colorectal carcinoma (Ayati et al. 2020). These amplifications are sometimes paired with rearrangements, such as EGFRvIII (deletion of exons 2-7; Gan et al. 2013) rendering the receptor constitutively active.

This SALSA MLPA probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/

Exon numbering

The *EGFR* exon numbering used in this P483-A1 HER gene family product description is the exon numbering from the LRG_304 sequence, the *ERBB2* exon numbering is from LRG_724, and the *ERBB3* exon numbering is from LRG_996. The *ERBB4* exon numbering used is the exon numbering from the NG_011805.2 sequence. The

exon numbering of the NM_ sequence that was used for determining a probe's ligation site does not always correspond to the exon numbering obtained from the LRG or NG sequences. As changes to the databases can occur after release of this product description, the NM_ sequence and exon numbering may not be up-to-date.

Probemix content

The SALSA MLPA Probemix P483-A1 HER gene family contains 54 MLPA probes with amplification products between 132 and 508 nucleotides (nt). This includes nine probes for *EGFR*, eight probes for *ERBB2*, four probes for *ERBB3*, and five probes for *ERBB4*. Furthermore, this probemix contains 14 probes targeting the regions flanking these four genes, as well as regions on the other arm of their respective chromosomes. This includes two probes for *WSB1*, in the CEP17 region, which is used as an internal control for HER2 amplification calling in other techniques (Allison, 2017).

In addition, 14 reference probes are included that target relatively copy number stable regions in various cancer types including breast cancer, glioblastoma and colorectal carcinoma. Probe sequences and the identity of the genes detected by the reference probes are available in table 3 and online (www.mrcholland.com).

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mrcholland.com.

Length (nt)	Name			
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)			
88-96	D-fragments (low signal indicates incomplete denaturation)			
92	Benchmark fragment			
100	X-fragment (X chromosome specific)			
105	Y-fragment (Y chromosome specific)			

MLPA technique

The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mrcholland.com). More information on the use of MLPA in tumour applications can be found in Hömig-Hölzel and Savola (2012).

MLPA technique validation

Internal validation of the MLPA technique using 16 DNA samples from healthy individuals is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens

Extracted DNA, derived from peripheral blood for germline testing, or from tumour tissue and corresponding healthy tissue. The latter includes DNA derived from fresh frozen or paraffin-embedded tissues, free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol. More information on the use of FFPE tissue samples for MLPA can be found in Atanesyan et al. (2017).

Reference samples

A sufficient number (≥3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples for germline analysis should be derived from different healthy individuals without a history of hereditary cancers, and for tumour analysis from different healthy individuals without a history of cancer.

More information regarding the selection and use of reference samples can be found in the MLPA General Protocol (www.mrcholland.com).

Positive control DNA samples

MRC Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/) have diverse collections of biological resources which may be used as positive control DNA samples in your MLPA experiments. Samples mentioned in the table below have been tested with this P483-A1 HER gene family probemix at MRC Holland and can be used as positive control samples to detect copy number alterations as specified. The quality of cell lines can change; therefore samples should be validated before use.

Sample name	Source	Chromosomal position of copy number alteration*	Altered target genes in P483-A1	Expected copy number alteration
NA10401	Coriell Institute	2p22.3-q34	SPAST, CPS1, ERBB4 , IKZF2	Heterozygous duplication
NA01229	Coriell Institute	2q34	CPS1, ERBB4 , IKZF2	Heterozygous duplication
NA10918	Coriell Institute	2q34	ERBB4, IKZF2	Heterozygous deletion
NA07081	Coriell Institute	7p11.2	VSTM2A, EGFR , LANCL2	Heterozygous duplication
	DSMZ	2p22.3	SPAST	Heterozygous duplication
		7p11.2	VSTM2A, EGFR , LANCL2	Heterozygous duplication
ACC-410		7q22.3	SLC26A4	Heterozygous deletion
(MFE-280) ◊		12q13.2	RPS26, ERBB3 , PA2G4	Amplification
		17p11.2-q12	FLCN, WSB1	Amplification
		17q12	PGAP3, ERBB2 , MIEN1	Heterozygous duplication
ACC-589	DSMZ	17q11.1	WSB1	Homozygous duplication
(JIMT-1) ◊	DOIVIZ	17q12	PGAP3, ERBB2 , MIEN1	Amplification

* Indicated chromosomal bands accommodate genes targeted by MLPA probes. However, the whole extent of copy number alteration (CNA) present in this cell line cannot be determined by this P483-A1 HER gene family probemix.

[◊] In this indicated cell line sample some of the reference probes are affected by CNAs.

Data analysis

Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mrcholland.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results

The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 . When this criterion is fulfilled, the following cut-off values for the FR of the probes can be used to interpret MLPA results for autosomal chromosomes or pseudo-autosomal regions:

Copy number status	Final ratio (FR)
Normal	0.80 < FR < 1.20
Homozygous deletion	FR = 0
Heterozygous deletion	0.40 < FR < 0.65
Heterozygous duplication	1.30 < FR < 1.65
Heterozygous triplication/homozygous duplication	1.75 < FR < 2.15

Ambiguous copy number

Note: The term "dosage quotient", used in older product description versions, has been replaced by "final ratio" to become consistent with the terminology of the Coffalyser.Net software. (Calculations, cut-offs and interpretation remain unchanged.) Please note that the Coffalyser.Net software also shows arbitrary borders as part of the statistical analysis of results obtained in an experiment. As such, arbitrary borders are different from the final ratio cut-off values shown here above.

Please note that these above mentioned final ratios are only valid for germline testing. Final ratios are affected both by percentage of tumour cells and by possible subclonality.

- <u>Arranging probes</u> according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in subclonal cases.
- False positive results: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can be one cause. Incomplete DNA denaturation (e.g. due to salt contamination) can also lead to a decreased probe signal, in particular for probes located in or near a GC-rich region. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- <u>Normal copy number variation</u> in healthy individuals is described in the database of genomic variants: http://dgv.tcag.ca/dgv/app/home. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- <u>Not all abnormalities detected by MLPA are pathogenic</u>. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- <u>Copy number changes detected by reference probes</u> or flanking probes are unlikely to have any relation to the condition tested for.
- False results can be obtained if one or more peaks are off-scale. For example, a duplication of one or more
 exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale
 peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net
 software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun
 the PCR products using either: a lower injection voltage or a shorter injection time, or a reduced amount
 of sample by diluting PCR products.

Limitations of the procedure

- Small (point) mutations in *EGFR*, *ERBB2*, *ERBB3*, and *ERBB4* will generally not be detected by using SALSA MLPA Probemix P483 HER gene family.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can cause false positive results. Mutations/SNVs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.
- MLPA analysis on tumour samples provides information on the *average* situation in the cells from which the DNA sample was purified. Gains or losses of genomic regions or genes may not be detected if the percentage of tumour cells is low. In addition, subclonality of the aberration affects the final ratio of the corresponding probe. Furthermore, there is always a possibility that one or more reference probes *do* show

a copy number alteration in a patient sample, especially in solid tumours with more chaotic karyotypes (i.e. in breast tumours).

Confirmation of results

Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

LOVD and COSMIC mutation databases

http://cancer.sanger.ac.uk/cosmic; http://www.lovd.nl. We strongly encourage users to deposit germline positive results in the Leiden Open Variant Database (LOVD) database or for somatic mutations in the COSMIC database. Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report false positive results due to SNVs and unusual results (e.g., a duplication of *ERBB4* exons 1 and 3 but not exon 2) to MRC Holland: info@mrcholland.com.

Length			Chromos	omal position	(hg18)ª	
(nt)	SALSA MLPA probe	EGFR	ERBB2	ERBB3	ERBB4	Reference
(111)		7p11.2	17q12	12q13.2	2q34	
64-105	Control fragments – see table in p	robemix content	section for mo	ore information		•
132	Reference probe 22310-L31738					4q22
137	Reference probe 22309-L11248					6p12
142 ¬	SLC26A4 probe 09253-L31440	7q22.3				
148 -	RPS26 probe 18804-L31441			Upstream		
154	ERBB3 probe 22311-L31431			Exon 25		
160	ERBB2 probe 12049-L12914		Exon 32			
166	Reference probe 16253-L31432					19p13
173	EGFR probe 05956-L20559	Exon 10				
178	ERBB4 probe 03172-L29132				Exon 1	
184	EGFR probe 22327-L31449	Exon 20				
190	ERBB2 probe 20106-L29064		Exon 13			
196	Reference probe 22312-L31739					10q22
202	EGFR probe 15736-L29210	Exon 11				
208	ERBB3 probe 22328-L32522			Exon 10		
214 -	LANCL2 probe 22329-L32523	Downstream				
220	Reference probe 22313-L31433					1p31
226	ERBB4 probe 04196-L29066				Exon 2	
232 ¬	SPAST probe 20173-L29067				2p22.3	
238	ERBB4 probe 22369-L31532				Exon 12	
244	ERBB2 probe 20068-L31445		Exon 23			
250	Reference probe 22314-L04215					5p13
256	ERBB2 probe 22330-L32524		Exon 14			

Table 1. SALSA MLPA Probemix P483 HER gene family

Longth		Chromosomal position (hg18) ^a						
Length (nt)	SALSA MLPA probe	EGFR	ERBB2	ERBB3	ERBB4	D.f		
(111)		7p11.2	17q12	12q13.2	2q34	Reference		
263	ERBB3 probe 04268-L31741			Exon 3a				
269 -	MIEN1 probe 22332-L31454		Downstream					
275	Reference probe 22316-L32525					21q21		
280	EGFR probe 22333-L31455	Exon 3						
287 -	VSTM2A probe 22331-L31797	Upstream						
292	ERBB2 probe 08088-L31742		Exon 24					
301	Reference probe 20124-L32194					3p12		
306	EGFR probe 22317-L32193	Exon 21						
313 -	WSB1 probe 22784-L32195		Upstream					
319 -	GRIN2B probe 17454-L21210			12p13.1				
326 -	WSB1 probe 22785-L32394		Upstream					
333 -	IKZF2 probe 17110-L32132				Upstream			
340	Reference probe 20129-L32131					9q21		
346	EGFR probe 22334-L31456	Exon 5						
355	ERBB3 probe 22335-L31457			Exon 21				
364	ERBB2 probe 12042-L12906		Exon 8					
372	Reference probe 22318-L31436					14q22		
382	EGFR probe 12901-L29185	Exon 28						
391	EGFR probe 05436-L04852	Exon 3						
400 ¬	PA2G4 probe 22337-L31459			Downstream				
409 o	ERBB2 probe 12040-L29143		Exon 1					
418	Reference probe 22319-L31437					11p11		
427	ERBB2 probe 12045-L12909		Exon 17					
436 -	PGAP3 probe 22338-L31460		Upstream					
445 ¬	CPS1 probe 22368-L31458				Downstream			
454	Reference probe 22320-L31438					15q24		
462	EGFR probe 22323-L20672	Exon 2						
475	ERBB4 probe 22324-L31446				Exon 20			
483 ¬	FLCN probe 22325-L31744		17p11.2					
494	ERBB4 probe 22326-L31448				Exon 3			
500	Reference probe 21783-L27807					10p11		
508	Reference probe 22321-L31439		1			5q31		

^a See section Exon numbering on page 1 for more information.

- Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

© The significance of *ERBB2* exon 1 deletions is not clear as this exon is non-coding and alternative transcript variants using other transcription start sites are known.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Single probe aberration(s) must be confirmed by another method.

Table 2 P483-A1	probes arranged	according to	chromosomal location
	probes arranged	according to	

Length (nt)	SALSA MLPA probe	Gene/Exonª	Location / Ligation site	<u>Partial</u> sequence ^b (24 nt adjacent to ligation site)	Distance to next probe	Location (hg18) in kb
		-	ion sites are acco	rding to the NM_005235.3 sequence	e. Exon nu	mbering is
	ng to NG_01180					
	20173-L29067	SPAST	2 p 22.3	AGAGTACTTGTA-ATGGGTGCAACT		02-032,216
445 ¬	22368-L31458	CPS1	2q34	CCACAAAAGTGG-TAGCTGTAGACT	1.0 M b	02-211,161
		stop codon	4197-4199			
		-	(exon 28)		r	
475	22324-L31446	ERBB4 , exon 20	2616-2617	CACACCTAGTCC-GGTTGCTGGGTG		02-212,135
238	22369-L31532	ERBB4 , exon 12	1601-1602	CAGGGCATCACC-TCTCTACAGTTC		02-212,275
494	22326-L31448	ERBB4, exon 3	569-570	TACCTGCCTCTG-GAGAATTTACGC		02-212,520
226	04196-L29066	ERBB4, exon 2	405-406	ACCTGGAACAGC-AGTACCGAGCCT		02-212,698
178	03172-L29132	ERBB4 , exon 1	274-275	CTTCCAAAAAAT-GAAGCCGGCGAC	469.5 kb	02-213,111
		start codon	273-275 (exon 1)			
333 -	17110-L32132	IKZF2	2q34	GCGATTCAGCTA-CCCAGATATTCA	-	02-213,581
	ocated on 7p11 ing to LRG_304.	-	ion sites are acco	rding to the NM_005228.5 sequenc	e. Exon nu	mbering is
287 -	22331-L31797	VSTM2A	7 p 11.2	AGCAAAGAGCAA-ATCGCCTGTAAA	573.2 kb	07-054,604
		start codon	262-264 (exon 1)			
462	22323-L20672	EGFR, exon 2	440-441	TAACTGTGAGGT-GGTCCTTGGGAA	1.0 kb	07-055,178
391	05436-L04852	EGFR, exon 3	533-534	TTATGTCCTCAT-TGCCCTCAACAC	0.1 kb	07-055,178
280	22333-L31455	EGFR, exon 3	625-626	CCTTAGCAGTCT-TATCTAACTATG	7.9 kb	07-055,179
346	22334-L31456	EGFR, exon 5	823-824	ACATTTCAGGCC-AAAAGTGTGATC	5.5 kb	07-055,186
173	05956-L20559	EGFR , exon 10	1434-1435	GATCCACAGGAA-CTGGATATTCTG	0.9 kb	07-055,192
202	15736-L29210	EGFR, exon 11	1496-1497	GGCTTGGCCTGA-AAACAGGACGGA	23.8 kb	07-055,193
184	22327-L31449	EGFR, exon 20	2699-2700	TGGCTCCCAGTA-CCTGCTCAACTG	10.3 kb	07-055,217
306	22317-L32193	EGFR, exon 21	2733-2732 reverse	AAGTAGTTCATG-CCCTGAAACAGA	13.7 kb	07-055,227
382	12901-L29185	EGFR, exon 28	3638-3639	CCCACACTACCA-GGACCCCCACAG	225.9 kb	07-055,241
		stop codon	3892-3894 (exon 28)			
214 ¬	22329-L32523	LANCL2	7 p 11.2	TCCAGCATTTGA-ACTTGACTCTTC	51.7 M b	07-055,466
142 -	09253-L31440	SLC26A4	7q22.3	TGCGATTGTGAT-GATCGCCATTCT	-	07-107,122
	located on 12q ing to LRG_996.	-	tion sites are acco	rding to the NM_001982.4 sequence	e. Exon num	bering is
319 ¬	17454-L21210	GRIN2B	12 p 13.1	CCTGAGCCCAAA-AGCAGTTGTTAC	40.9 M b	12-013,798
148 -	18804-L31441	RPS26	12q13.2	CCCATCCTGTCG-CAGACAAAGAAA	42.6 kb	12-054,722
		start codon	137-139 (exon 1a)			
263	04268-L31741	ERBB3 , exon 3a	412-413	GTGGCCATGAAT-GAATTCTCTACT	7.7 kb	12-054,765
208	22328-L32522	ERBB3 , exon 10	1252-1253	TTCAGAGACCCC-TGGCACAAGATC	5.0 kb	12-054,773
355	22335-L31457	ERBB3 , exon 21	2606-2607	AGGGAATGTACT-ACCTTGAGGAAC	2.1 kb	12-054,778
154	22311-L31431	ERBB3 , exon 25	3161-3162	TGGAGCCAGAAC-TAGACCTAGACC	7.1 kb	12-054,780
		stop codon	4163-4165 (exon 28)			

Length (nt)	SALSA MLPA probe	Gene/Exonª	Location / Ligation site	Partial sequence ^b (24 nt adjacent to ligation site)	Distance to next probe	Location (hg18) in kb
400 ¬	22337-L31459	PA2G4	12q13.2	TTACAGGTATTG-CTTTTCCCACCA	-	12-054,787
	•	12. Indicated ligati ering is according		ing to the NM_004448.4 sequence (unless indic	cated
483 ¬	22325-L31744	FLCN	17 p 11.2	TGGCATTCAGAT-GAACAGTCGGAT	5.6 M b	17-017,072
313 -	22784-L32195	WSB1	17q11.1	ATTGCCAAGACA-AAATAGTGATGG	8.1 kb	17-022,655
326 -	22785-L32394	WSB1	17q11.1	ATTGATGAGGAT-TATCCAGTGCAA	12.4 M b	17-022,663
436 -	22338-L31460	PGAP3	17q12	AAAATGGACTAC-TTCTGTGCCTCC	14.2 kb	17-035,084
409 o	12040-L29143	ERBB2 , exon 1	NM_001005862.3; 105-106	GTGTCCATATAT-CGAGGCGATAGG	20.3 kb	17-035,098
		start codon	176-178 (exon 6)			
364	12042-L12906	ERBB2 , exon 8	530-531	CCGTGCTAGACA-ATGGAGACCCGC	3.5 kb	17-035,118
190	20106-L29064	ERBB2 , exon 13	1148-1149	AGGTGACAGCAG-AGGATGGAACAC	0.4 kb	17-035,122
256	22330-L32524	ERBB2 , exon 14	1297-1298	TTTGGGAGCCTG-GCATTTCTGCCG	3.4 kb	17-035,122
427	12045-L12909	ERBB2 , exon 17	1604-1605	ACCTCTGCTTCG-TGCACACGGTGC	7.8 kb	17-035,126
244	20068-L31445	ERBB2 , exon 23	2356-2357	AAGGTGCTTGGA-TCTGGCGCTTTT	0.3 kb	17-035,133
292	08088-L31742	ERBB2 , exon 24	2390-2391	CCCAGGGCATCT-GGATCCCTGATG	4.0 kb	17-035,134
160	12049-L12914	ERBB2 , exon 32	3764-3765	ACCCCGAGTACT-TGACACCCCAGG	1.9 kb	17-035,138
		stop codon	3941-3943 (exon 32)			
269 -	22332-L31454	MIEN1	17q12	TTTGAGATAGAG-ATAAATGGACAG	-	17-035,139

^a See section Exon numbering on page 1 for more information.

^b Only partial probe sequences are shown. Complete probe sequences are available at www.mrcholland.com. Please notify us of any mistakes: info@mrcholland.com.

- Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

[∞] The significance of *ERBB2* exon 1 deletions is not clear as this exon is non-coding and alternative transcript variants using other transcription start sites are known.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Single probe aberration(s) must be confirmed by another method.

Length	SALSA MLPA	Cono	Chromosomal	Partial sequence (24 nt adjacent	Location
(nt)	probe	Gene	band (hg18)	to ligation site)	(hg18) in kb
220	22313-L31433	RPE65	1p31	CGTACGGGCAAT-GACTGAGAAAAG	01-068,683
301	20124-L32194	GBE1	3p12	ACCGAGTTGGAA-CAGCATTGCCAG	03-081,667
132	22310-L31738	PKD2	4q22	CGCATTCACAAA-CTACACTATTTC	04-089,187
250	22314-L04215	NIPBL	5p13	CAAGTGCCTGTT-TTACAACAGAAC	05-037,012
508	22321-L31439	SLC22A5	5q31	GATCTGCTTCGA-ACCTGGAATATC	05-131,753
137	22309-L11248	PKHD1	6p12	GGAAGATTGGAA-ACTTTTGATTTT	06-052,046
340	20129-L32131	PCSK5	9q21	GACTATGAAGAA-TGTGTCCCTTGT	09-078,045
500	21783-L27807	PARD3	10p11	GATCAGCCTTCC-CACTCTCTGGAG	10-034,646
196	22312-L31739	NODAL	10q22	AGAGCGGTTTCA-GATGGACCTATT	10-071,865
418	22319-L31437	MYBPC3	11p11	CATCGGTGCCAA-GCGTACCCTGAC	11-047,321
372	22318-L31436	GCH1	14q22	AATGTTGGGTGT-GTTCCGGGAGGA	14-054,381
454	22320-L31438	SEMA7A	15q24	GGGACCTGGCTT-CAATGTTTCTAC	15-072,498
166	16253-L31432	RNASEH2A	19p13	AGGACACGGACT-TTGTCGGCTGGG	19-012,779
275	22316-L32525	BACH1	21q21	ATGCACAAGCTT-ACTCCAGAACAG	21-029,624

Table 3. Reference probes arranged according to chromosomal location.

Complete probe sequences are available at www.mrcholland.com.

Related SALSA MLPA probemixes

- P004 ERBB2: Contains probes for *ERBB2* and several flanking genes in 17p and 17q. Suitable also for detecting CEP17.
- P078 Breast tumour: Contains probes for *EGFR* and *ERBB2*.
- P105 Glioma-2: Contains probes for *EGFR*.
- P175 Tumour Gain: Contains probes for EGFR and ERBB2.
- P315 EGFR: Contains 30 probes for the *EGFR* gene, including probes specific for the L858R and the T790M point mutations.

References

- Allison KH (2017). Molecular testing in breast cancer. Diagnostic Molecular Pathology. *Elsevier*. Chapter 21: 257-69.
- Atanesyan L et al. (2017). Optimal fixation conditions and DNA extraction methods for MLPA analysis on FFPE tissue-derived DNA. *Am J Clin Pathol*. 147:60-8.
- Ayati A et al. (2020). A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. *Bioorganic Chem.* 99:103811.
- Gan HK et al. (2013). The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. *FEBS Journal* 280:5350-70.
- Hömig-Hölzel C and Savola S. (2012). Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. *Diagn Mol Pathol*. 21:189-206.
- Mitri Z et al. (2012). The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. *Chemother Res Pract. article ID* 743193.
- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Hum Mutat.* 28:205.
- Sergina NV and Moasser MM (2007). The HER family and cancer: emerging molecular mechanisms and therapeutic targets. *Trends Mol Med.* 13: 527-34.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem*. 421:799-801.

Selected publications using SALSA MLPA Probemix P483 HER gene family

- Laurito S et al. (2020). Working together for the family: determination of HER oncogene co-amplifications in breast cancer. *Oncotarget* 11: 2774-92.
- Soosanabadi M et al. (2019). Application of Multiplex Ligation-Dependent Probe Amplification in Determining the Copy Number Alterations of HER Gene Family Members in Invasive Ductal Breast Carcinoma. *Rep Biochem Mol Biol.* 8:91-101.

P483 prod	P483 product history			
Version	Modification			
A1	First release.			

Implemented changes in the product description

Version A1-02 – 06 October 2021 (04P)

- The altered target genes updated for sample ACC-410 in section 'Positive control DNA samples'.

Version A1-01 - 22 September 2021 (04P)

- Not applicable, new document.

More infor	More information: www.mrcholland.com; www.mrcholland.eu				
	1057 DL, Amsterdam, The Netherlands				
E-mail	info@mrcholland.com (information & technical questions)				
	order@mrcholland.com (orders)				
Phone	+31 888 657 200				