

Product Description SALSA® MLPA® Probemix P117-C3 ABCC8

To be used with the MLPA General Protocol.

Version C3

As compared to version C2, one reference probe has been replaced and six probe lengths have been adjusted. For complete product history see page 8.

Catalogue numbers:

- P117-025R: SALSA MLPA Probemix P117 ABCC8, 25 reactions.
- **P117-050R:** SALSA MLPA Probemix P117 ABCC8, 50 reactions.
- P117-100R: SALSA MLPA Probemix P117 ABCC8, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mrcholland.com).

Certificate of Analysis

Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mrcholland.com.

Precautions and warnings

For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mrcholland.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information

The SALSA MLPA Probemix P117 ABCC8 is a **research use only (RUO)** assay for the detection of deletions or duplications in the *ABCC8* gene, which is associated with familial hyperinsulinemic hypoglycemia 1.

Familial hyperinsulinemic hypoglycemia 1 (HHF1) is familial hyperinsulinism caused by mutations in the gene encoding the SUR1 subunit of the pancreatic beta cell inwardly rectifying potassium channel (*ABCC8*). Familial hyperinsulinism causes low blood glucose concentrations in infancy due to unregulated insulin release.

Mutations can be divided into two classes. Class I mutations result in the absence of the protein at the surface of the cell membrane and class II mutations cause an always closed channel at the surface of the cell membrane. The latter class gives a less severe phenotype than the former class (Flanagan et al. 2009). ATPbinding cassette, subfamily C, member 8 (ABCC8), together with the pore-forming KCNJ11, forms the pancreatic subtype of K_{ATP} channels. ATP-sensitive potassium channels (K_{ATP}) link membrane potential to cellular metabolism like insulin secretion and neurotransmitter release, by regulating the flux of potassium ions across the cell membrane. They are located in pancreas, heart and vascular smooth muscle tissue.

The *ABCC8* gene (39 exons) spans ~84 kb of genomic DNA and is located on chromosome 11p15.1, ~17 Mb from the p-telomere.

More information is available at https://www.ncbi.nlm.nih.gov/books/NBK1375/.

This SALSA MLPA probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/

Exon numbering

The *ABCC8* exon numbering used in this P117-C3 ABCC8 product description is the exon numbering from the NG_008867.1 sequence. The exon numbering of the NM_ sequence that was used for determining a probe's ligation site does not always correspond to the exon numbering obtained from the NG sequences. As changes to the databases can occur after release of this product description, the NM_ sequence and exon numbering may not be up-to-date.

Probemix content

The SALSA MLPA Probemix P117-C3 ABCC8 contains 49 MLPA probes with amplification products between 131 and 490 nucleotides (nt). This includes 39 probes for the gene *ABCC8*, one for each exon. In addition, 10 reference probes are included that detect autosomal chromosomal locations. Complete probe sequences and the identity of the genes detected by the reference probes are available online (www.mrcholland.com).

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mrcholland.com.

Length (nt)	Name
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)
88-96	D-fragments (low signal indicates incomplete denaturation)
92	Benchmark fragment
100	X-fragment (X chromosome specific)
105	Y-fragment (Y chromosome specific)

MLPA technique

The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mrcholland.com).

MLPA technique validation

Internal validation of the MLPA technique using 16 DNA samples from healthy individuals is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens

Extracted DNA, free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

Reference samples

A sufficient number (≥3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from different unrelated individuals who are from families without a history of familial hyperinsulinism. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol (www.mrcholland.com).

Positive control DNA samples

MRC Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/) have diverse collections of biological resources which may be used as positive control DNA samples in your MLPA experiments. The quality of cell lines can change; therefore samples should be validated before use.

Data analysis

Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mrcholland.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results

The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 and the final ratio (FR) of each individual reference probe in the patient samples should be between 0.80 and 1.20. When these criteria are fulfilled, the following cut-off values for the FR of the probes can be used to interpret MLPA results for autosomal chromosomes or pseudo-autosomal regions:

Copy number status	Final ratio (FR)
Normal	0.80 < FR < 1.20
Homozygous deletion	FR = 0
Heterozygous deletion	0.40 < FR < 0.65
Heterozygous duplication	1.30 < FR < 1.65
Heterozygous triplication/homozygous duplication	1.75 < FR < 2.15
Ambiguous copy number	All other values

Note: The term "dosage quotient", used in older product description versions, has been replaced by "final ratio" to become consistent with the terminology of the Coffalyser.Net software. (Calculations, cut-offs and interpretation remain unchanged.) Please note that the Coffalyser.Net software also shows arbitrary borders as part of the statistical analysis of results obtained in an experiment. As such, arbitrary borders are different from the final ratio cut-off values shown here above.

- <u>Arranging probes</u> according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in mosaic cases. Analysis of parental samples may be necessary for correct interpretation of complex results.
- <u>False positive results</u>: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can be one cause. Incomplete DNA denaturation (e.g. due to salt contamination) can also lead to a decreased probe signal, in particular for probes located in or near a GC-rich region or in or near the *ABCC8* gene. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- <u>Normal copy number variation</u> in healthy individuals is described in the database of genomic variants: <u>http://dgv.tcag.ca/dgv/app/home</u>. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- <u>Not all abnormalities detected by MLPA are pathogenic</u>. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- <u>Copy number changes detected by reference probes</u> or flanking probes are unlikely to have any relation to the condition tested for.
- False results can be obtained if one or more peaks are off-scale. For example, a duplication of one or more
 exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale
 peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net
 software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun

the PCR products using either: a lower injection voltage or a shorter injection time, or a reduced amount of sample by diluting PCR products.

Limitations of the procedure

- In most populations, the major cause of genetic defects in the *ABCC8* gene are small (point) mutations, most of which will not be detected by using SALSA MLPA Probemix P117 ABCC8.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can cause false
 positive results. Mutations/SNVs (even when >20 nt from the probe ligation site) can reduce the probe
 signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe
 oligonucleotide to the sample DNA.

Confirmation of results

Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

ABCC8 mutation database

https://databases.lovd.nl/shared/genes/ABCC8. We strongly encourage users to deposit positive results in the Leiden Open Variation Database. Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report copy number changes detected by the reference probes, false positive results due to SNVs and unusual results (e.g., a duplication of *ABCC8* exons 3 and 5 but not exon 4) to MRC Holland: info@mrcholland.com.

Table 1. SALSA MLPA Probemix P117-C3 ABCC8

Length (nt)		Chromosomal position (hg18) ^a		
	SALSA MLPA probe	Reference	ABCC8	
64-105	Control fragments – see table in probemix of	content section for more info	rmation	
131 ¥	Reference probe 00797-L25925	5q		
136 ¥	ABCC8 probe 08103-L32316		Exon 2	
142 «	ABCC8 probe 20996-L29385		Exon 38	
148	ABCC8 probe 08111-L07987		Exon 10	
154	ABCC8 probe 08124-L08000		Exon 23	
160 «	ABCC8 probe 08140-L25572		Exon 39	
166	ABCC8 probe 09859-L10282		Exon 18	
172	ABCC8 probe 08106-L25573		Exon 5	
178	Reference probe 18905-L24500	1р		
184 «	ABCC8 probe 08135-L25575		Exon 34	
190	ABCC8 probe 08129-L25574		Exon 28	
195 *	Reference probe 20880-L14405	21q		
202	ABCC8 probe 19121-L25068		Exon 21	
208	ABCC8 probe 20997-L29386		Exon 1	
214	ABCC8 probe 08107-L09400		Exon 6	
220	ABCC8 probe 08120-L07996		Exon 19	
226	ABCC8 probe 19123-L25070		Exon 13	
232	ABCC8 probe 19124-L25071		Exon 9	
238	ABCC8 probe 08113-L25708		Exon 12	
244	Reference probe 13389-L14846	6q		
251 «	ABCC8 probe 19125-L25072		Exon 33	
260 ¥ «	ABCC8 probe 21876-L32314		Exon 36	
268 ¥	ABCC8 probe 23010-L32452		Exon 15	
277	ABCC8 probe 08126-L25936		Exon 25	
283 «	ABCC8 probe 08132-L09469		Exon 31	
292	Reference probe 09054-L09308	4q		
300	Reference probe 10095-L10519	8q		
310	ABCC8 probe 08104-L25577		Exon 3	
319 «	ABCC8 probe 08133-L25578		Exon 32	
328 Ж	ABCC8 probe 18302-SP0638-L25966		Exon 14	
338	ABCC8 probe 08105-L25971		Exon 4	
346	ABCC8 probe 08127-L08003		Exon 26	
355	ABCC8 probe 19127-L25074		Exon 8	
364 ¥ «	ABCC8 probe 23011-L32521		Exon 37	
370	ABCC8 probe 08118-L25580		Exon 17	
382	ABCC8 probe 20998-L25937		Exon 24	
391	ABCC8 probe 08131-L26135		Exon 30	
400	Reference probe 10411-L12204	9q		
409	Reference probe 03272-L02709	3q		
418	ABCC8 probe 19128-L25075		Exon 22	
427	Reference probe 11381-L12106	17q		
436	ABCC8 probe 08117-L07993		Exon 16	
442	ABCC8 probe 19118-L25583		Exon 7	
450 ¥ «	ABCC8 probe 21487-L32315		Exon 35	
459	ABCC8 probe 08112-L26172		Exon 11	
466	ABCC8 probe 08128-L26170		Exon 27	
474	ABCC8 probe 19129-L25076		Exon 29	
481	ABCC8 probe 19130-L25584		Exon 20	
490	Reference probe 10218-L10698	7q		

^a See section Exon numbering on page 2 for more information.

* New in version C3.

¥ Changed in version C3. Minor alteration, no change in sequence detected.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

X This probe consists of three parts and has two ligation sites. A low signal of this probe can be due to depurination of the sample DNA, e.g. due to insufficient buffering capacity or a prolonged denaturation time. When this occurs in reference samples, it can look like an increased signal in the test samples.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Single probe aberration(s) must be confirmed by another method.

Table 2. ABCC8 probes arranged according to chromosomal location

Length	SALSA MLPA	ABCC8	Ligation site	Partial sequence ^b (24 nt adjacent	Distance to
(111)	pione	exon start opdon	70-72 (Evon 1)	to ligation site)	
208	20007-1 20386	Evon 1	100-101	ΤΟΤΤΟΟΤΛΟΤΟΤ-ΤΟΛΤΟΛΟΟΤΤΟΟ	1.7 kb
136 ¥	08103-132316	Exon 2	328-320		1.7 KD
310	08104-1 25577	Exon 3	456-457		4.0 Kb
228	08105-125071	Exon 4	604-605		0.0 KD
172	08106-125573	Exon 5	70/-703 reverse		1.0 KD
21/	08107-1.09400	Exon 6	10/9-1050		7.2 Kb
1/2	10118-1 25583	Exon 7	1104-1105		7.4 Kb
355	19177-I 25074	Exon 8	1377-1378		4.0 Kb
232	19124-1 25074	Exon 9	21 nt before exon 9		0.2 kb
148	08111-107987	Exon 10	1615-1616		10.6 kb
459	08112-126172	Exon 11	1701-1702		10.0 Kb
238	08113-125708	Exon 12	1848-1849		2.2 kb
226	19123-1 25070	Exon 12	1894-1893 reverse		0.4 kb
328 Ж	18302-SP0638-	Exon 14	12nt; 39nt after	GTGAGTCCTGCT-CTCCCAGAGGGA	0.4 kb
268 ¥	22010-122452	Evon 15	2165-2166		0.8 kb
436	08117-107993	Exon 16	2703 2100 2282-2281 reverse		0.0 Kb
370	08118-1 25580	Exon 17	2202 2201 7676736		10.1 Kb
370	00110 22000	EXON 17	130 nt before exon		1.5 Kb
166	09859-L10282	Exon 18	18	CTATGCAGCATT-TGTGGCTACAGA	0.9 kb
220	08120-L07996	Exon 19	2428-2429	TGGAGGAGAACA-TCATCTTTGAGA	1.1 kb
481	19130-L25584	Exon 20	7 nt after exon 20	AACGGGTTAGTA-GCAGCCTCTGAG	0.6 kb
202	19121-L25068	Exon 21	19 nt before exon 21 <i>reverse</i>	CAAAGAGGAGGA-ACACATCATGCC	2.2 kb
418	19128-L25075	Exon 22	2718-2719	AAGAGGACAGTG-GTCTTAGTGACC	2.1 kb
154	08124-L08000	Exon 23	2839-2840	AATGCCAGCTCT-TTGAGCACTGGA	1.1 kb
382	20998-L25937	Exon 24	2987-2988	GGAAGAGGAGGA-AGGTACAGGCAA	0.2 kb
277	08126-L25936	Exon 25	3015-3016	AGCGAGGAGGAT-GACAACCTGTCG	0.4 kb
346	08127-L08003	Exon 26	3321-3322	ACGTCTGTCACT-GTGGAGTGGACA	1.2 kb
466	08128-L26170	Exon 27	2 nt after exon 27	CATCGACCAGGT-ACAGAGGACCGT	0.8 kb
190	08129-L25574	Exon 28	33 nt before exon 28	ТСААТАССАААА-ТТСАССТСАСТС	2.1 kb
474	19129-L25076	Exon 29	22 nt after exon 29	ACATTCCCCCAA-GGTAGGAGTGGA	4.3 kb
391	08131-L26135	Exon 30	3779-3780	CAACATTGCTTC-CCTCTTCCTCAC	0.6 kb
283 «	08132-L09469	Exon 31	3827-3826 reverse	ATGCACCGATGT-ACTCCTGGGGAG	0.5 kb
319 «	08133-L25578	Exon 32	3977-3978	GAACCTGGCAGA-CATGGAGCTCCA	0.3 kb
251 «	19125-L25072	Exon 33	4115-4116	GATCCAGAACCT-GAGCGTGCGCTA	1.1 kb
184 «	08135-L25575	Exon 34	4235-4236	CTCCTTCTCTCT-TGCCTTCTTCCG	0.3 kb
450 ¥ «	21487-L32315	Exon 35	55 nt after exon 35	TCAGTTCCATCA-GATCTGGAGCAC	0.3 kb
260 ¥ «	21876-L32314	Exon 36	4379-4380	CACTTCCAGATT-TAACCTGGACCC	1.0 kb
364 ¥ «	23011-L32521	Exon 37	4576-4577	CCAGCATCTTCA-TCATGGACGAGG	0.5 kb
142 «	20996-L29385	Exon 38	14 nt before exon 38	CAACAGCTGTTG-CCCCCACTTGGC	0.8 kb
160 «	08140-L25572	Exon 39	4814-4815	TGCAGACAAGTG-ACCTGCCAGAGC	
		stop codon	4813-4815 (Exon 39)		

^a See section Exon numbering on page 2 for more information.

^b Only partial probe sequences are shown. Complete probe sequences are available at www.mrcholland.com. Please notify us of any mistakes: info@mrcholland.com.

¥ Changed in version C3. Minor alteration, no change in sequence detected.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

X This probe consists of three parts and has two ligation sites. A low signal of this probe can be due to depurination of the sample DNA, e.g. due to insufficient buffering capacity or a prolonged denaturation time. When this occurs in reference samples, it can look like an increased signal in the test samples.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Single probe aberration(s) must be confirmed by another method.

References

- Flanagan SE et al. (2009). Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6. 2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. *Hum Mutat*. 30:170-180.
- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Hum Mutat.* 28:205.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.

Selected publications using SALSA MLPA Probemix P117 ABCC8

- Adi A et al. (2015). Screening for mutations in ABCC8 and KCNJ11 genes in Saudi persistent hyperinsulinemic hypoglycemia of infancy (PHHI) patients. *Genes (Basel)*. 6:206-215.
- Bellanné-Chantelot C et al. (2010). ABCC8 and KCNJ11 molecular spectrum of 109 patients with diazoxide-unresponsive congenital hyperinsulinism. *J Med Genet*. 47:752-759.
- Flanagan S et al. (2012). Partial ABCC8 gene deletion mutations causing diazoxide-unresponsive hyperinsulinaemic hypoglycaemia. *Pediatr Diabetes*. 13:285-289.
- Martínez R et al. (2016). Clinical and genetic characterization of congenital hyperinsulinism in Spain. *Eur J Endocrinol.* 174:717-726.
- Tatsi E et al. (2020). Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy. *Pediatr Diabetes*. 21:28-39.
- Yorifuji T et al. (2011). Molecular and clinical analysis of Japanese patients with persistent congenital hyperinsulinism: predominance of paternally inherited monoallelic mutations in the KATP channel genes. *J Clin Endocrinol Metab.* 96:E141-E145.
- Yorifuji T et al. (2013). Efficacy and safety of long-term, continuous subcutaneous octreotide infusion for patients with different subtypes of KATP-channel hyperinsulinism. *Clin Endocrinol (Oxf)*. 78:891-897.

P117 product history		
Version	Modification	
C3	One reference probe has been replaced and six probe lengths have been adjusted.	
C2	Six probes have been adjusted in length.	
C1	Four reference probes have been replaced and four added. Ten target specific probes have been replaced. The control fragments have been adjusted (QDX2).	
B1	The probe for ABCC8 exon 18 has been replaced.	
A1	First release.	

Implemented changes in the product description

Version C3-01 - 19 January 2021 (04P)

- Product description rewritten and adapted to a new template.
- Product description adapted to a new product version (version number changed, changes in Table 1 and Table 2).
- Ligation sites of the probes targeting the *ABCC8* gene updated according to new version of the NM_ reference sequence.

Version 06 (55) – 13 February 2017

- Product description adapted to a new product version (version number changed, lot number added, new picture included).
- Minor textual changes on page 1 and 2.
- Ligation sites updated according to version 4 of NM_000352.
- References added on page 1.

More information: www.mrcholland.com; www.mrcholland.eu		
	MRC Holland bv; Willem Schoutenstraat 1	
E-mail	info@mrcholland.com (information & technical questions) order@mrcholland.com (orders)	
Phone	+31 888 657 200	