

Product Description SALSA® MLPA® Probemix P377-B1 Hematologic Malignancies

To be used with the MLPA General Protocol.

Version B1

As compared to A3, one *PAX5* specific probe is replaced. Changes in the probe length of several probes but no change in the sequences detected. For complete product history see page 15.

Catalogue numbers:

- **P377-025R:** SALSA MLPA Probemix P377 Hematologic Malignancies, 25 reactions.
- **P377-050R:** SALSA MLPA Probemix P377 Hematologic Malignancies, 50 reactions.
- **P377-100R:** SALSA MLPA Probemix P377 Hematologic Malignancies, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mrcholland.com).

Certificate of Analysis

Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mrcholland.com.

Precautions and warnings

For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mrcholland.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information

The SALSA MLPA Probemix P377 Hematologic Malignancies is a **research use only (RUO)** assay, and is intended for screening DNA samples derived from blood or bone marrow for the most common and diagnostically significant copy number changes associated with hematologic malignancies, including acute lymphoblastic leukaemia (ALL), acute myeloid leukaemia (AML), chronic lymphoid leukaemia (CLL), chronic myeloid leukaemia (CML), myelodysplastic syndrome (MDS) and various lymphomas. The probemix can also be used to detect the *JAK2* p.V617F point mutation which is commonly detected in myeloproliferative neoplasm (MPN). This probemix is intended to be used in combination with karyotype analysis. Suggestions on MLPA probemixes that can be used to confirm results or to get a better resolution on genes or chromosomal areas of interest can be found in Table 2.

This SALSA MLPA probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/ Matched Annotation from NCBI and EMBL-EBI (MANE): https://www.ncbi.nlm.nih.gov/refseq/MANE/ Tark – Transcript Archive: http://tark.ensembl.org/

Exon numbering

The exon numbering used in this P377-B1 product description is the exon numbering derived from MANE project (release version 1.0), unless otherwise specified, see Table 2. As changes to the databases can occur after release of this product description, the NM_ sequence and exon numbering may not be up-to-date. Please

note that exon numbering for the same gene might be different in other MRC Holland product descriptions, where other resources used for exon numbering are indicated.

Probemix content

The SALSA MLPA Probemix P377-B1 Hematologic Malignancies contains 54 MLPA probes with amplification products between 125 and 507 nucleotides (nt). This includes 53 probes for the detection of deletions or duplications in the chromosomal regions 2p (*MYCN*, *ALK*), 5q (*MIR145*, *EBF1* and *MIR146A*), 6q, 7p12 (*IKZF1*), 7q, 8q24 (*MYC*), 9p (*MTAP*, *CDKN2A*, *CDKN2B*, *PAX5*), 10q23 (*PTEN*), 11q22 (*ATM*), 12p13 (*ETV6*, *CCND2*, *MDM2*), 12q, 13q14 (*RB1*, *MIR15A*, *DLEU2*, *DLEU1*), 17p13 (*TP53*), 17q, Chr 18, Chr 19 and 21q22 (*RUNX1*) which are suggested to have a diagnostic or prognostic role in the analysis of samples in hematologic malignancies.

Furthermore, this probemix also contains one probe specific for the *JAK2* p.V617F (c. 1849G>T) point mutation, which will only generate a signal when the mutation is present. In this probemix, 53 out of 54 MLPA probes are used as reference probes, as they are spread over a number of different chromosomal regions and it is expected that the majority of these probes will have a normal copy number in most samples. Complete probe sequences are available in Table 2 and online (www.mrcholland.com).

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mrcholland.com.

Length (nt)	Name
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)
88-96	D-fragments (low signal indicates incomplete denaturation)
92	Benchmark fragment
100	X-fragment (X chromosome specific)
105	Y-fragment (Y chromosome specific)

MLPA technique

The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mrcholland.com). More information on the use of MLPA in tumour applications can be found in Hömig-Hölzel and Savola (2012).

MLPA technique validation

Internal validation of the MLPA technique using 16 DNA samples from healthy individuals is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens

Extracted DNA free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

Reference samples

A sufficient number (≥3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from different healthy individuals. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol (www.mrcholland.com).

Positive control DNA samples

MRC Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/) have diverse collections of biological resources which may be used as positive control DNA samples in your MLPA experiments. Samples from Coriell Institute and Horizon Discovery have been tested with this P377-B1 probemix at MRC Holland and can be used as a positive control samples for the copy number alterations (CNAs) and mutations as described in the table below. The quality of cell lines can change; therefore samples should be validated before use.

Sample name	Chromosomal position of CNA*	Altered target genes in P377-B1	Expected CNA or mutation
Coriell Institute	samples		
NA01353	2p23.2-p24.3	ALK, MYCN	Heterozygous duplication
NA00945	2p24.3	MYCN	Heterozygous deletion
NA04409	2p24.3	MYCN	Heterozygous duplication
NA04371	5q33.3	EBF1, MIR146A	Heterozygous duplication
NA01221	6q21	FYN	Heterozygous duplication
NA09367	6q21-q23.3	FYN, MYB	Heterozygous duplication
NA07994	6q23.3-q27	MYB, ESR1, SMOC2	Heterozygous duplication
NA08386	6q27	SMOC2	Heterozygous deletion
NA07081	7p12.2	IKZF1	Heterozygous duplication
NA10925	7p12.2	IKZF1	Heterozygous deletion
NA10160	7q21.2	CDK6	Heterozygous deletion
NA12519	7q31.2	МЕТ	Heterozygous triplication /homozygous duplication
NA10313	7q36.2	DPP6	Heterozygous deletion
NA02030	8q24.21	МҮС	Heterozygous duplication
NA03999	8q24.21	МҮС	Heterozygous deletion
NA03226	9p13.2-p21.3	MTAP, CDKN2A, CDKN2B, PAX5	Heterozygous duplication
NA05067	9p13.2-p21.3	MTAP, CDKN2A, CDKN2B, PAX5	Heterozygous duplication
NA01750	9p21.3	MTAP, CDKN2A, CDKN2B	Heterozygous duplication
NA02819	9p21.3	MTAP, CDKN2A, CDKN2B	Heterozygous duplication
NA20125	10q23.31	PTEN	Heterozygous duplication
NA08618	11q22.3	ATM	Heterozygous duplication
NA09596	11q22.3	ATM	Heterozygous deletion
NA07981	12p13.2-p13.32	CCND2, ETV6	Heterozygous triplication /homozygous duplication
NA08035	12p13.2-p13.32	CCND2, ETV6	Heterozygous duplication
NA05832	13q14.2-q14.3	RB1, MIR15A, DLEU2, DLEU1	Heterozygous duplication
NA14164	13q14.2-q14.3	RB1, MIR15A, DLEU2, DLEU1	Heterozygous deletion
NA06870	18p11.21	RNMT	Heterozygous triplication /homozygous duplication
NA50322	18p11.21	RNMT	Heterozygous deletion
NA01359	18p11.21-q21.2	RNMT, DCC	Heterozygous duplication
NA03623	18p11.21-q21.2	RNMT, DCC	Heterozygous duplication
NA07891	18q21.2	DCC	Heterozygous deletion
NIA10700	9p21.3	MTAP, CDKN2A, CDKN2B	Heterozygous duplication
NA12722	18p11.21-q21.2	RNMT, DCC	Heterozygous duplication
	7p12.2-q36.2	IKZF1, CDK6, RELN, MET, DPP6	Heterozygous deletion
NA23245	8q24.21	МҮС	Heterozygous duplication
	9p24.1	JAK2	p.V617F mutation

Sample name	Chromosomal position of CNA*	Altered target genes in P377-B1	Expected CNA or mutation
Horizon Diagnos	tics reference stan	dard samples	
JAK2 p.V617F	7p12.2-q36.2	IKZF1, CDK6, RELN, MET, DPP6	Heterozygous duplication
50% reference	9p24.1	JAK2	p.V617F mutation
standard [◊]	18q21.2	DCC	Heterozygous duplication
JAK2 p.V617F	7p12.2-q36.2	IKZF1, CDK6, RELN, MET, DPP6	Heterozygous duplication
0% reference standard [§]	18q21.2	DCC	Heterozygous duplication

* Indicated chromosomal bands accommodate genes targeted by MLPA probes, however, the whole extent of CNA present in this cell line cannot be determined by P377-B1 Hematologic Malignancies probemix.

^o DNA from SW28 cell line with SW48 background (Catalogue no.: HD649)

[§]DNA from SW48 cell line (Catalogue no.: HD652)

SALSA Binning DNA SD068

The SD068 Binning DNA provided with this probemix can be used for binning of all probes including the *JAK2* p.V617F mutation-specific probe (208 nt probe 05672-L17742). SD068 Binning DNA is a mixture of genomic DNA from healthy individuals and plasmid DNA that contains the target sequence detected by the above mentioned probe. Inclusion of one reaction with 5 µl SD068 Binning DNA in initial MLPA experiments is essential as it can be used to aid in data binning of the peak pattern using Coffalyser.Net software. Furthermore, Binning DNA should be included in the experiment whenever changes have been applied to the set-up of the capillary electrophoresis device (e.g. when capillaries have been renewed). Binning DNA should never be used as a reference sample in the MLPA data analysis, neither should it be used in quantification of mutation signals. It is strongly advised that all samples tested are extracted with the same method and derived from the same source of tissue. For further details, please consult the SD068 Binning DNA product description, available online: www.mrcholland.com. **This product is for research use only (RUO).**

Data analysis

Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mrcholland.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results

The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 . When this criterion is fulfilled, the following cut-off values for the final ratio of the probes can be used to interpret MLPA results for autosomal chromosomes or pseudo-autosomal regions:

Copy number status	Final ratio (FR)
Normal	0.80 < FR < 1.20
Homozygous deletion	FR = 0
Heterozygous deletion	0.40 < FR < 0.65
Heterozygous duplication/gain	1.30 < FR < 1.65
Heterozygous triplication/homozygous duplication/gain	1.75 < FR < 2.15
Ambiguous copy number	All other values

Note: The term "dosage quotient", used in older product description versions, has been replaced by "final ratio" to become consistent with the terminology of the Coffalyser.Net software. (Calculations, cut-offs and interpretation remain unchanged.) Please note that the Coffalyser.Net software also shows arbitrary borders as part of the statistical analysis of results obtained in an experiment. As such, arbitrary borders are different from the final ratio cut-off values shown here above.

Please note that these above mentioned final ratios are only valid for germline testing. Final ratios are affected both by percentage of tumour cells and by possible subclonality.

- <u>Arranging probes</u> according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in subclonal cases.
- False positive results: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can be one cause. Incomplete DNA denaturation (e.g. due to salt contamination) can also lead to a decreased probe signal, in particular for probes located in or near a GC-rich region or in or near the *RUNX1* genes. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- <u>Normal copy number variation</u> in healthy individuals is described in the database of genomic variants: http://dgv.tcag.ca/dgv/app/home. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- <u>Not all abnormalities detected by MLPA are pathogenic</u>. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- False results can be obtained if one or more peaks are off-scale. For example, a duplication of one or more
 exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale
 peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net
 software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun
 the PCR products using either: a lower injection voltage or a shorter injection time, or a reduced amount
 of sample by diluting PCR products.

P377 specific notes

- In case data analysis is performed with a different method than Coffalyser.Net, we recommend treating each probe as a reference probe with the exception of the *JAK2* mutation-specific probe.
- In samples from tumour tissues, reference probes are more prone to have deviating copy number results as compared to blood derived germline samples. When regions targeted by reference probes are affected by copy number alterations, it can help to turn the slope correction off in Coffalyser.Net analysis to get the correct copy number interpretation on the target region.

Limitations of the procedure

- In most populations, the majority of genetic alterations in the genes included in this probemix are small (point) mutations, most of which will not be detected by using SALSA MLPA Probemix P377 Hematologic Malignancies.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can cause false positive results. Mutations/SNVs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.
- MLPA analysis on tumour samples provides information on the *average* situation in the cells from which the DNA sample was purified. Gains or losses of genomic regions or genes may not be detected if the percentage of tumour cells is low. In addition, subclonality of the aberration affects the final ratio of the corresponding probe.

Confirmation of results

Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

COSMIC mutation database

http://cancer.sanger.ac.uk/cosmic. We strongly encourage users to deposit positive results in the COSMIC Database. Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report, false positive results due to SNVs and unusual results (e.g., a deletion of *IKZF1* exons 3 and 7 but not exon 5) to MRC Holland: info@mrcholland.com.

Length (nt)	SALSA MLPA probe	Chromosomal position (hg18)	Used as a reference probe	Location (hg18) in kb
64-105	Control fragments – see table in pro	bemix content section for mo	re information	
125	DCC probe 21566-L27817	18q21.2	Yes	18-048,959
132	IKZF1 probe 03340-L27816	7p12.2	Yes	07-050,338
137	ATM probe 02675-L01168	11q22.3	Yes	11-107,599
143	IKZF1 probe 13872-L27818	7p12.2	Yes	07-050,418
148	MYB probe 12500-L27820	6q23.3	Yes	06-135,549
154	MYC probe 20383-L27819	8q24.21	Yes	08-128,822
160	CDKN2A probe 01524-L27821	9p21.3	Yes	09-021,985
165	MIR15A probe 04019-L17530	13q14.3	Yes	13-049,521
169	RUNX1 probe 20384-L25345	21q22.12	Yes	21-035,343
173	MYCN probe 03028-L17950	2p24.3	Yes	02-016,000
178	MIR146A probe 15652-L17541	5q33.3	Yes	05-159,845
184	MYC probe 14869-L16611	8q24.21	Yes	08-128,822
190	DLEU2 probe 04020-L17532	13q14.3	Yes	13-049,554
196	ETV6 probe 14054-L15652	12p13.2	Yes	12-011,935
203	ATM probe 08426-L08309	11q22.3	Yes	11-107,659
208 §	JAK2 probe 05672-L17742	p.V617F=c.1849G>T	No	09-005,064
214	ESR1 probe 11996-L12824	6q25.1	Yes	06-152,424
220	MET probe 10329-L10843	7q31.2	Yes	07-116,211
226	EBF1 probe 12509-L13559	5q33.3	Yes	05-158,459
232 ¶	DPP6 probe 14027-L15625	7q36.2	Yes	07-154,227
239	ALK probe 08325-L28371	2p23.2	Yes	02-029,274
244	ETV6 probe 13874-L17160	12p13.2	Yes	12-011,883
252 ‡	TP53 probe 02376-L27832	17p13.1	Yes	17-007,519
256	SMOC2 probe 09380-L27831	6q27	Yes	06-168,809
262	FYN probe 12546-L27830	6q21	Yes	06-112,148
266	MIR146A probe 15653-L18125	5q33.3	Yes	05-159,845
274	UNC13D probe 11696-L17540	17q25.1	Yes	17-071,342
279	PAX5 probe 13870-L17534	9p13.2	Yes	09-036,993
285	MDM2 probe 07179-L17544	12q15	Yes	12-067,494
292	MIR145 probe 14248-L15086	5q33.1	Yes	05-148,789
297 «	RUNX1 probe 02840-L27829	21q22.12	Yes	21-035,094
303	IKZF3 probe 15461-L17667	17q12	Yes	17-035,202
313	CDK6 probe 03184-L28370	7q21.2	Yes	07-092,085
321	CACNA1A probe 09065-L28369	19p13.13	Yes	19-013,289
328 ¥	MTAP probe 01294-L13278	9p21.3	Yes	09-021,793
337	IKZF1 probe 13869-L15387	7p12.2	Yes	07-050,427
346 ±	TP53 probe 00345-L00171	17p13.1	Yes	17-007,514
355	CCND2 probe 00498-L00084	12p13.32	Yes	12-004,279
364	EBF1 probe 14059-L27828	5q33.3	Yes	05-158,137
373 *	PAX5 probe 23224-L22633	9p13.2	Yes	09-036,830
384	DLEU1 probe 01589-L27826	13q14.3	Yes	13-049,782
392	TP53 probe 01587-L17743	17p13.1	Yes	17-007,515
400	PRPF31 probe 06024-L05449	19q13.42	Yes	19-059,327
409	TP53 probe 02263-L01749	17p13.1	Yes	17-007,532
418	CDKN2B probe 20386-L28368	9p21.3	Yes	09-021,991
427	ATM probe 08443-L08330	11q22.3	Yes	11-107,722
436	MYCN probe 03327-L17744	2p24.3	Yes	02-016,003
445	PTEN probe 13684-L18623	10q23.31	Yes	10-089,614
453	ATM probe 20385-L27825	11q22.3	Yes	11-107,629
470	RB1 probe 01800-L28440	13q14.2	Yes	13-047,953

Table 1. SALSA MLPA Probemix P377-B1 Hematologic Malignancies

Length (nt)	SALSA MLPA probe	Chromosomal position (hg18)	Used as a reference probe	Location (hg18) in kb
478	PTEN probe 13696-L28441	10q23.31	Yes	10-089,715
488	RB1 probe 12565-L28442	13q14.2	Yes	13-047,937
499	RNMT probe 20552-L17745	18p11.21	Yes	18-013,724
507	RELN probe 20553-L18622	7q22.1	Yes	07-103,058

* New in version B1.

¥ Changed in version B1. Minor alteration, no change in sequence detected.

§ Mutation-specific probe. This probe will only generate a signal when the *JAK2* p.V617F mutation is present.

 \pm SNVs rs80184930 and rs774269719 could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

9 SNV rs367797577 could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

‡ Ligation site of this probe is located on a common mutational hotspot both in germline and somatic samples as reported by IARC TP53 Database (http://p53.iarc.fr/). In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Please note: not all known SNVs are mentioned in the table above. Single probe aberration(s) must be confirmed by another method.

	Table 2. P377-B1	probes arranged	d according to	chromosomal location
--	------------------	-----------------	----------------	----------------------

(nť)	SALSA MLPA probe	Gene / Exon ^a	Location / Ligation site	Partial sequence ^b (24 nt adjacent to ligation site)	Distance to next probe	
• •	•	nanaa) indiaatad l	•	· · · ·		
2p gain (<i>MYCN</i> and <i>ALK</i> genes), indicated ligation sites and exon numbering for <i>MYCN</i> are according to the MANE Select transcript NM_005378.6.						
2p gain, including MYCN and ALK, is detected in CLL specimens and is suggested to be a marker of disease						
				010). 2p gains and amplifications		
				e P037 CLL-1 and P252 NB mix 2		
173	03028-L17950	MYCN , ex 2	470-471	GGAAGAAGTTT-GAGCTGCTGCCC	3.5 kb	
436	03327-L17744	MYCN , ex 3	1351-1352	TGCACCCCCACA-GAAGAAGATAAA	13 M b	
239	08325-L28371	ALK	2p23.2	TTTCTCTTGGAT-ATATGCCATACC	-	
Loss of	5q (MIR145, EBF1	and MIR146A ger	nes), indicated ligation sit	es and exon numbering for EBF1 a	are according	
to the N	ANE Select trans	cript NM_024007.	5 and for MIR146A accord	ding to RefSeq transcript NR_0297	701.1.	
				nge in MDS and in AML. MIR145 a		
				al. 2010). Deletions of EBF1 have b		
				More probes targeting the 5q arm	can be found	
		•	•	the P335 ALL-IKZF1 probemix.		
292	14248-L15086	MIR145	5q33.1	CAGCCACTTGTG-ATGCTGGGGAAG	9.4 M b	
364	14059-L27828	EBF1 , ex 10	1413-1414	GTTGTGGAAGTC-ACACTGTCCTAC	322.2 kb	
226	12509-L13559	EBF1 , ex 1	278-279	ATTTGCTTTCCA-GCCCGCCTTGAT	1.4 M b	
178	15652-L17541	MIR146A , ex 1	4 nt before exon 1	CACCATCTCTGA-AAAGCCGATGTG	0.1 kb	
266	15653-L18125	MIR146A , ex 1	8 nt after exon 1	TCGTGGGCTTGA-GGACCTGGAGAG	-	
	umber alterations		8 nt after exon 1	TCGTGGGCTTGA-GGACCTGGAGAG	-	
Copy nu	umber alterations	at 6q		TCGTGGGCTTGA-GGACCTGGAGAG alignancies such as CLL (Wang et a	- al. 2011), ALL,	
Copy nu Chromo non-Hoo	umber alterations psome 6q deletions dgkins lymphoma	at 6q s are commonly for (NHL) (Merup et a	und in various lymphoid m I. 1998), T-cell lymphoblas	alignancies such as CLL (Wang et a stic lymphoma (T-LBL), multiple my	veloma (MM),	
Copy nu Chromo non-Hoo and mai	umber alterations psome 6q deletions dgkins lymphoma ntle zone lymphom	at 6q s are commonly fo (NHL) (Merup et a na (MZL). Note tha	und in various lymphoid m I. 1998), T-cell lymphoblas t deletion of 6q has progno	alignancies such as CLL (Wang et a stic lymphoma (T-LBL), multiple my ostic implications in some of these	veloma (MM), entities. <i>MYB</i>	
Copy nu Chromo non-Hoo and man duplicat	umber alterations osome 6q deletions dgkins lymphoma ntle zone lymphom tions have been de	at 6q s are commonly fo (NHL) (Merup et a na (MZL). Note tha escribed in leukem	und in various lymphoid m l. 1998), T-cell lymphoblas t deletion of 6q has progno ias (reviewed in Pattabira	alignancies such as CLL (Wang et a stic lymphoma (T-LBL), multiple my ostic implications in some of these man et al. 2012), e.g. <i>MYB</i> is ampli	veloma (MM), entities. <i>MYB</i> ified in 5-12%	
Copy nu Chromo non-Hoo and man duplicat of pedia	umber alterations psome 6q deletions dgkins lymphoma ntle zone lymphom tions have been de atric ALL cases (Lin	at 6q s are commonly fo (NHL) (Merup et a na (MZL). Note tha escribed in leukem u et al. 2017, Bard	und in various lymphoid m I. 1998), T-cell lymphoblas t deletion of 6q has progno ias (reviewed in Pattabira elli et al. 2020). More prob	alignancies such as CLL (Wang et a stic lymphoma (T-LBL), multiple my ostic implications in some of these man et al. 2012), e.g. <i>MYB</i> is ampli bes for detection of deletion on chro	veloma (MM), entities. <i>MYB</i> ified in 5-12% omosome 6q	
Copy nu Chromo non-Hoo and mai duplicat of pedia are pres	umber alterations bosome 6q deletions dgkins lymphoma ntle zone lymphom tions have been de atric ALL cases (Lin sent in the P037 Cl	at 6q s are commonly for (NHL) (Merup et a na (MZL). Note tha escribed in leukem u et al. 2017, Bard LL-1 probemix. Mo	und in various lymphoid m I. 1998), T-cell lymphoblas t deletion of 6q has progno ias (reviewed in Pattabira elli et al. 2020). More prob re probes for <i>MYB</i> can be	alignancies such as CLL (Wang et a stic lymphoma (T-LBL), multiple my ostic implications in some of these man et al. 2012), e.g. <i>MYB</i> is ampli bes for detection of deletion on chr found in the P383 T-ALL probemix.	veloma (MM), entities. <i>MYB</i> ified in 5-12% omosome 6q	
Copy nu Chromo non-Hoo and man duplicat of pedia are press 262	umber alterations bosome 6q deletions dgkins lymphoma ntle zone lymphom tions have been de atric ALL cases (Lin sent in the P037 Cl 12546-L27830	at 6q s are commonly for (NHL) (Merup et a ha (MZL). Note tha escribed in leukem u et al. 2017, Bardu L-1 probemix. Mo	und in various lymphoid m l. 1998), T-cell lymphoblas t deletion of 6q has progno ias (reviewed in Pattabira elli et al. 2020). More prob re probes for <i>MYB</i> can be 6q21	alignancies such as CLL (Wang et a stic lymphoma (T-LBL), multiple my ostic implications in some of these man et al. 2012), e.g. <i>MYB</i> is ampli bes for detection of deletion on chro	veloma (MM), entities. <i>MYB</i> ified in 5-12% omosome 6q 23.4 M b	
Copy nu Chromo non-Hoo and mai duplicat of pedia are pres 262 148	umber alterations bosome 6q deletions dgkins lymphoma ntle zone lymphom tions have been de atric ALL cases (Lin sent in the P037 Cl	at 6q s are commonly for (NHL) (Merup et a na (MZL). Note tha escribed in leukem u et al. 2017, Bard LL-1 probemix. Mo	und in various lymphoid m l. 1998), T-cell lymphoblas t deletion of 6q has progno ias (reviewed in Pattabira elli et al. 2020). More prob re probes for <i>MYB</i> can be 6q21 6q23.3	alignancies such as CLL (Wang et a stic lymphoma (T-LBL), multiple my ostic implications in some of these man et al. 2012), e.g. <i>MYB</i> is ampli bes for detection of deletion on chr found in the P383 T-ALL probemix.	veloma (MM), entities. <i>MYB</i> ified in 5-12% omosome 6q	
Copy nu Chromo non-Hoo and man duplicat of pedia are press 262	umber alterations bosome 6q deletions dgkins lymphoma ntle zone lymphom tions have been de atric ALL cases (Lin sent in the P037 Cl 12546-L27830	at 6q s are commonly for (NHL) (Merup et a ha (MZL). Note tha escribed in leukem u et al. 2017, Bardu L-1 probemix. Mo	und in various lymphoid m l. 1998), T-cell lymphoblas t deletion of 6q has progno ias (reviewed in Pattabira elli et al. 2020). More prob re probes for <i>MYB</i> can be 6q21	alignancies such as CLL (Wang et a stic lymphoma (T-LBL), multiple my ostic implications in some of these man et al. 2012), e.g. <i>MYB</i> is ampli bes for detection of deletion on chro found in the P383 T-ALL probemix. GGTGTGAACTCT-TCGTCTCATACG	veloma (MM), entities. <i>MYB</i> ified in 5-12% omosome 6q 23.4 M b	

Length (nt)	SALSA MLPA probe	Gene / Exon ^a	Location / Ligation site	Partial sequence ^b (24 nt adjacent to ligation site)	Distance to next probe
IKZF1 g			-	for <i>IKZF1</i> are according to the N	•
Deletion	is of the IKZF1 (IKA	AROS) gene are de		n cases that also carry the BCR-ABL	
				ed with relapse and very poor clini	
				eletions of <i>IKZF1</i> might be involved uman B-cell differentiation, e.g. in N	
				202 IKZF1-ERG and P335 ALL-IKZF1	
132	03340-L27816	IKZF1 , ex 3	355-356	GGGAGGACAGCA-AAGCTCCAAGAG	79.9 kb
143	13872-L27818	IKZF1 , ex 5	680-681	TGCGGGGCCTCA-TTCACCCAGAAG	9.2 kb
337	13869-L15387	IKZF1 , ex 7	994-995	CAAGATAGGATC-AGAGAGATCTCT	41.7 M b
Loss of			• · · · · ·		_
				isorders (MDS and AML). In MDS, I	
				or prognosis (Sole et al. 2005). Rec 77 in MDS (Cordoba et al. 2012).	
				2308 MET contains probes covering	
the MET					
313	03184-L28370	CDK6	7q21.2	GAGAAGAAGACT-GGCCTAGAGATG	11 M b
507	20553-L18622	RELN	7q22.1	GGGCTATTGATG-AGATTATCATGA	13.2 M b
220	10329-L10843	MET	7q31.2	AAGTGGATGGCT-TTGGAAAGTCTG	38 M t
232 ¶	14027-L15625	DPP6	7q36.2	ACCAAGATCCTA-GCCTACGATGAG	
MYC ge	ene, 8q24.21, indi	icated ligation sit	es and exon numbering	for MYC are according to the M	MANE Selec
	pt NM_002467.6.	-	-	-	
				atologic malignancies, including Al	
		mphomas (review	ved in Vita et al. 2006) and	d could predict overall survival in di	
			nati at al 2020) Mara nua	has far MIVO says ha farmed in the DC	
cell lym	phoma (Quesada e	et al. 2017; Schiep		bes for MYC can be found in the PC	
cell lym 184	phoma (Quesada) 14869-L16611	et al. 2017; Schiep MYC , ex 3	1431-1432	AACAACCGAAAA-TGCACCAGCCCC	
cell lym 184 154	phoma (Quesada) 14869-L16611 20383-L27819	et al. 2017; Schiep MYC , ex 3 MYC , ex 3	1431-1432 1520-1521	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT	0.1 kb
cell lymr 184 154 JAK2 p.	phoma (Quesada o 14869-L16611 20383-L27819 .V617F mutation,	et al. 2017; Schiep MYC , ex 3 MYC , ex 3 9p24.1, indicated	1431-1432 1520-1521	AACAACCGAAAA-TGCACCAGCCCC	0.1 kb
cell lym 184 154 JAK2 p. Select t	phoma (Quesada o 14869-L16611 20383-L27819 . V617F mutation , ranscript NM_004	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4.	1431-1432 1520-1521 ligation site and exon n	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according	0.1 kb to the MANE
cell lym 184 154 JAK2 p. Select tr <i>JAK2</i> p.	phoma (Quesada o 14869-L16611 20383-L27819 .V617F mutation, ranscript NM_004 .V617F mutation,	et al. 2017; Schiep MYC , ex 3 MYC , ex 3 9p24.1, indicated 972.4. in exon 14, is a	1431-1432 1520-1521 ligation site and exon n somatic mutation of 0	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according ⁻ G into T resulting in substitution	0.1 kt to the MANE of valine to
cell lym 184 154 JAK2 p. Select tr JAK2 p. phenyla	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a tive activation of o	1431-1432 1520-1521 ligation site and exon n somatic mutation of C cell proliferation. JAK2 p.	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according	0.1 kt to the MANE of valine to hout myeloio
cell lym 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in	homa (Quesada of 14869-L16611 20383-L27819 V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, M polycythemia ver	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a tive activation of o MDS and myelopro ra (PV) (Jones et a	1431-1432 1520-1521 ligation site and exon no a somatic mutation of (cell proliferation. JAK2 p.) oliferative neoplasms (MI al. 2009). P520 MPN mix	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according 6 into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected	0.1 kt to the MANE of valine to hout myeloid s (~95%) are on sensitivity
cell lym 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all	homa (Quesada of 14869-L16611 20383-L27819 V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu ancies – in AML, M polycythemia ver lele burden) for the	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myelopro ra (PV) (Jones et a e following JAK2 n	1431-1432 1520-1521 ligation site and exon no a somatic mutation of (cell proliferation. JAK2 p.) oliferative neoplasms (MI al. 2009). P520 MPN mix	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according ⁻ G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie	0.1 kt to the MANE of valine to hout myeloid s (~95%) are on sensitivity
cell lym 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all	homa (Quesada of 14869-L16611 20383-L27819 V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, M polycythemia ver	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a tive activation of o MDS and myelopro ra (PV) (Jones et a e following JAK2 n 2-E543del.	1431-1432 1520-1521 ligation site and exon no a somatic mutation of (cell proliferation. JAK2 p.) oliferative neoplasms (MI al. 2009). P520 MPN mix	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according 6 into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected	0.1 kt to the MANE of valine to hout myeloic s (~95%) are on sensitivity
cell lymr 184 154 JAK2 p. Select tr JAK2 p phenyla maligna found in (≥1 % all D544de	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, N polycythemia ver lele burden) for the I and <i>JAK2</i> p.N54	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a itive activation of of MDS and myelopro- ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14;	1431-1432 1520-1521 ligation site and exon no a somatic mutation of (cell proliferation. <i>JAK2</i> p. ¹ biliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according 6 into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, s	0.1 kb of the MANE of valine to hout myeloid s (~95%) are on sensitivity JAK2 p.E543-
cell lym 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all	homa (Quesada of 14869-L16611 20383-L27819 V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu ancies – in AML, M polycythemia ver lele burden) for the	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myeloprof ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F	1431-1432 1520-1521 ligation site and exon no a somatic mutation of (cell proliferation. JAK2 p.) oliferative neoplasms (MI al. 2009). P520 MPN mix	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according 6 into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected	0.1 kt of the MANE of valine to hout myeloio s (~95%) are on sensitivity JAK2 p.E543
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (\geq 1 % all D544de 208 §	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu ancies – in AML, M polycythemia vei lele burden) for the I and JAK2 p.N54	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a itive activation of of MDS and myelopro- ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14;	1431-1432 1520-1521 ligation site and exon no a somatic mutation of (cell proliferation. <i>JAK2</i> p. ¹ biliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according 6 into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, s	0.1 kt of the MANE of valine to hout myeloio s (~95%) are on sensitivity JAK2 p.E543
cell lymp184154JAK2 p.Select trJAK2 p.phenylamalignafound in($\geq 1 \%$ allD544de208 §9p21.3 0	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu ancies – in AML, M polycythemia vei lele burden) for the I and JAK2 p.N54 05672-L17742 deletions	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myelopro ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T)	1431-1432 1520-1521 ligation site and exon n a somatic mutation of C cell proliferation. <i>JAK2</i> p. ¹ oliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according 6 into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, s	0.1 kt of the MANE of valine to hout myeloio s (~95%) are on sensitivity JAK2 p.E543 16.7 M t
cell lymp184154JAK2 p.Select trJAK2 p.phenylamalignafound in($\geq 1 \%$ allD544de208 §9p21.3 g	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu ancies – in AML, M polycythemia vei lele burden) for the l and JAK2 p.N54 05672-L17742 deletions deletions are espe	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myelopro ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in	1431-1432 1520-1521 ligation site and exon n a somatic mutation of C cell proliferation. <i>JAK2</i> p. ³ bliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell pred	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detectind d in MPN samples: <i>JAK2</i> p.V617F, s GTCTCCACAGAA-ACATACTCCATA	0.1 kt of the MANE of valine to hout myeloid s (~95%) are on sensitivity JAK2 p.E543 16.7 M t tients (Bertir
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 € et al. 200	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu ancies – in AML, M polycythemia vei lele burden) for the l and JAK2 p.N54 05672-L17742 deletions deletions are espen 003). Deletions of	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myelopro ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have	1431-1432 1520-1521 ligation site and exon n a somatic mutation of C cell proliferation. <i>JAK2</i> p. ³ bliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell precession	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according 6 into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, s	0.1 kt of the MANE of valine to hout myeloio s (~95%) are on sensitivity JAK2 p.E543 16.7 M t tients (Bertir oth pediatric
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 0 et al. 20 and adu 2020; N	phoma (Quesada of 14869-L16611 20383-L27819 V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, M polycythemia vel lele burden) for the l and JAK2 p.N54 05672-L17742 deletions deletions are espe 003). Deletions of ilt ALL (Fizzotti et Malarikova et al.	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a tive activation of of MDS and myelopro ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additional	1431-1432 1520-1521 ligation site and exon no a somatic mutation of C cell proliferation. <i>JAK2</i> p. V oliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell prece been shown to associat et al. 1997) and are also by, preliminary studies si	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected d in MPN samples: <i>JAK2</i> p.V617F, s GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL pate te with unfavourable outcome in b frequent in mantle cell lymphoma (uggest that patients with <i>MTAP</i>	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertin oth pediatrid (Streich et al homozygous
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 c et al. 20 and adu 2020; M deletion	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, M polycythemia ver lele burden) for the land <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espen- 03). Deletions of ilt ALL (Fizzotti et Malarikova et al.	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a tive activation of of MDS and myelopro- ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in CDKN2A/2B have al. 1995; Yamada 2020). Additionall with MAT2A inhit	1431-1432 1520-1521 ligation site and exon means a somatic mutation of Coell proliferation. JAK2 p. Voliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell predered been shown to associate at al. 1997) and are also by, preliminary studies stociators, which are currently	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected d in MPN samples: <i>JAK2</i> p.V617F, . GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL pate te with unfavourable outcome in b frequent in mantle cell lymphoma (uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis	0.1 kt of valine to hout myeloid s (~95%) ard on sensitivity JAK2 p.E543 16.7 M t tients (Bertin oth pediatric (Streich et al homozygous et al. 2021)
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 c et al. 20 and adu 2020; M deletion Deletion	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, N polycythemia ver lele burden) for the l and <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espen- 03). Deletions of ilt ALL (Fizzotti et Malarikova et al. 1 n could be treated ns of 9p21.3 are d	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a itive activation of of MDS and myelopro- ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible letected also in ot	1431-1432 1520-1521 ligation site and exon means a somatic mutation of Coefficient of the source of the sou	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected d in MPN samples: <i>JAK2</i> p.V617F, s GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL patter te with unfavourable outcome in b frequent in mantle cell lymphoma (uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a	0.1 kt of valine to hout myeloid s (~95%) ard on sensitivity JAK2 p.E543 16.7 Mt tients (Bertin oth pediatric (Streich et al homozygous et al. 2021) ire present in
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 c et al. 20 and adu 2020; M deletion Deletior the P202	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitution incies – in AML, No polycythemia ver lele burden) for the I and <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espendiated 03). Deletions of ilt ALL (Fizzotti et Malarikova et al. 20 in could be treated as of 9p21.3 are of 2 IKZF1-ERG, P33	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a itive activation of of MDS and myelopro- ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible letected also in ot 5 ALL-IKZF1 and F	1431-1432 1520-1521 ligation site and exon means a somatic mutation of Coefficient of the	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected d in MPN samples: <i>JAK2</i> p.V617F, s GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL patter te with unfavourable outcome in b frequent in mantle cell lymphoma (uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity JAK2 p.E543 16.7 Mt tients (Bertin oth pediatric (Streich et al homozygous et al. 2021) ire present ir
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 @ 9p21.3 @ et al. 20 and adu 2020; N deletion Deletior the P20; region p	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu- noies – in AML, M polycythemia ver lele burden) for the land <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espe 003). Deletions of ilt ALL (Fizzotti et Alarikova et al. no could be treated of 9p21.3 are of 2 IKZF1-ERG, P33 probemix, which d	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a itive activation of of MDS and myelopro ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhibit letected also in ot 5 ALL-IKZF1 and F etects both copy r	1431-1432 1520-1521 ligation site and exon no a somatic mutation of C cell proliferation. <i>JAK2</i> p. ¹ oliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse 2316-2315, reverse been shown to associate et al. 1997) and are also by, preliminary studies so bitors, which are currently ther hematologic maligna 2419 CDKN2A/2B-CDK4 p number and methylation of	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according of into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, contains GTCTCCACAGAA-ACATACTCCATA GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma (uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatiss ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes.	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertir oth pediatric (Streich et al homozygous et al. 2021) ire present ir CDKN2A/2E
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 c et al. 20 and adu 2020; M deletion Deletion region p 328	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu ancies – in AML, M polycythemia ver lele burden) for the l and <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espe 003). Deletions of lt ALL (Fizzotti et Malarikova et al. could be treated as of 9p21.3 are do 2 IKZF1-ERG, P33 probemix, which do 01294-L13278	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. , in exon 14, is a ritive activation of of MDS and myelopro ra (PV) (Jones et a e following JAK2 m 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in CDKN2A/2B have al. 1995; Yamada 2020). Additionall with MAT2A inhibi- letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP	1431-1432 1520-1521 ligation site and exon means a somatic mutation of C a somatic mutation. JAK2 p. biliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell predered been shown to associate to al. 1997) and are also bilifers, which are currently her hematologic malignate 2419 CDKN2A/2B-CDK4 produmber and methylation of 9p21.3	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detectind d in MPN samples: <i>JAK2</i> p.V617F, GTCTCCACAGAA-ACATACTCCATA GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma of uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertin oth pediatric (Streich et al homozygous et al. 2021) ire present ir CDKN2A/2E
cell lymp184154154JAK2 p.Select trJAK2 p.phenylamalignafound in(≥ 1 % allD544de208 §208 §9p21.3 cet al. 20and adu2020; MdeletionDeletionthe P200;region p328160160	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitution, Inine and constitution incies – in AML, No polycythemia ver lele burden) for the I and <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espen- 03). Deletions of of ALL (Fizzotti et Malarikova et al. in could be treated as of 9p21.3 are of 2 IKZF1-ERG, P33 probemix, which di 01294-L13278 01524-L27821	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myelopro ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP <i>CDKN2A</i>	1431-1432 1520-1521 ligation site and exon no a somatic mutation of C cell proliferation. JAK2 p. bliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell predered been shown to associate et al. 1997) and are also by, preliminary studies subitors, which are currently been and methylation of the state of	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected d in MPN samples: <i>JAK2</i> p.V617F, C GTCTCCACAGAA-ACATACTCCATA Cursor ALL and in 50% of T-ALL pate te with unfavourable outcome in b frequent in mantle cell lymphoma of uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCCGCGGCTG	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 M tients (Bertin oth pediatric (Streich et al homozygous et al. 2021) re present in CDKN2A/2E 192.6 kt 5.3 kt
cell lymp 184 154 JAK2 p. Select tr JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 @ et al. 20 and adu 2020; M deletion Deletior the P200; region p 328 160 418	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, lnine and constitu- ncies – in AML, M polycythemia ver lele burden) for the l and <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espen- 003). Deletions of lt ALL (Fizzotti et Alarikova et al. could be treated as of 9p21.3 are d 2 IKZF1-ERG, P33 probemix, which d 01294-L13278 01524-L27821 20386-L28368	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a itive activation of of MDS and myelopro- ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhib letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP CDKN2A	1431-1432 1520-1521 ligation site and exon magnetic mutation of C a somatic mutation. JAK2 p. poliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell predered e been shown to associate et al. 1997) and are also by, preliminary studies supprises poitors, which are currently her hematologic malignate 2419 CDKN2A/2B-CDK4 p pumber and methylation of 9p21.3 9p21.3	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected d in MPN samples: <i>JAK2</i> p.V617F, C GTCTCCACAGAA-ACATACTCCATA Cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma of uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCCGCGGCTG CCTAGGAAAGGT-GATAGAGCTTAG	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertin oth pediatric (Streich et al homozygous et al. 2021) ire present in CDKN2A/2E 192.6 kt 5.3 kt 14.8 M t
cell lymp 184 154 JAK2 p. Select tr JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 @ et al. 20 and adu 2020; M deletion Deletior the P20; region p 328 160 418 PAX5 g	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu- noies – in AML, M polycythemia ver lele burden) for the l and <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espen- 003). Deletions of lt ALL (Fizzotti et Aalarikova et al. could be treated ns of 9p21.3 are of 2 IKZF1-ERG, P33 probemix, which d 01294-L13278 01524-L27821 20386-L28368 rene, 9p13.2, india	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a itive activation of of MDS and myelopro- ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhib letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP CDKN2A	1431-1432 1520-1521 ligation site and exon magnetic mutation of C a somatic mutation. JAK2 p. poliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell predered e been shown to associate et al. 1997) and are also by, preliminary studies supprises poitors, which are currently her hematologic malignate 2419 CDKN2A/2B-CDK4 p pumber and methylation of 9p21.3 9p21.3	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected d in MPN samples: <i>JAK2</i> p.V617F, C GTCTCCACAGAA-ACATACTCCATA Cursor ALL and in 50% of T-ALL pate te with unfavourable outcome in b frequent in mantle cell lymphoma of uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCCGCGGCTG	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertin oth pediatric (Streich et al homozygous et al. 2021) ire present in CDKN2A/2E 192.6 kt 5.3 kt 14.8 M t
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 @ 9p21.3 @ et al. 20 and adu 2020; M deletion Deletior the P20; region p 328 160 418 PAX5 g	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu- noies – in AML, M polycythemia ver lele burden) for the land <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espe 003). Deletions of ilt ALL (Fizzotti et Aalarikova et al. could be treated of 9p21.3 are of 2 IKZF1-ERG, P33 probemix, which di 01294-L13278 01524-L27821 20386-L28368 iene, 9p13.2, indi- pt NM_016734.3.	et al. 2017; Schiep MYC, ex 3 MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a itive activation of of MDS and myeloprof ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP CDKN2A CDKN2B cated ligation site	1431-1432 1520-1521 ligation site and exon means a somatic mutation of Coefficient of the somatic mutation of Coefficient of the some set of the solution	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to G into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detected d in MPN samples: <i>JAK2</i> p.V617F, C GTCTCCACAGAA-ACATACTCCATA Cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma of uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCCGCGGCTG CCTAGGAAAGGT-GATAGAGCTTAG	0.1 kt of valine to hout myeloid s (~95%) ard on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertin oth pediatrid (Streich et al homozygous et al. 2021) re present in CDKN2A/2E 192.6 kt 5.3 kt 14.8 M t MANE Selec
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 @ 9p21.3 @ et al. 20 and adu 2020; N deletion Deletior the P200 region p 328 160 418 PAX5 g transcrit PAX5 de	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu- noies – in AML, M polycythemia ver lele burden) for the land <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espe 003). Deletions of ilt ALL (Fizzotti et Alarikova et al. could be treated of 9p21.3 are of 2 IKZF1-ERG, P33 probemix, which di 01294-L13278 01524-L27821 20386-L28368 lene, 9p13.2, indi- pt NM_016734.3. eletions are freque large and extend	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myeloprof ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP CDKN2A CDKN2B cated ligation site ent in B-ALL and in sometimes into th	1431-1432 1520-1521 ligation site and exon means a somatic mutation of C cell proliferation. JAK2 p. pliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell preder been shown to associate et al. 1997) and are also by preliminary studies services, which are currently pumber and methylation of 9p21.3 9p21.3 9p21.3 es and exon numbering n BCR-ABL1 positive ALL pe CDKN2A/2B genes. No	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to be into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, contains GTCTCCACAGAA-ACATACTCCATA GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma of uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCCGCGGCTG CCTAGGAAAGGT-GATAGAGCTTAG for <i>PAX5</i> are according to the N cases (Coyaud et al. 2010). 9p delete that amplifications of exon 2 &	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertir oth pediatric (Streich et al homozygous et al. 2021) ire present ir CDKN2A/2E 192.6 kt 5.3 kt 14.8 M t MANE Selec etions in ALL 5 have beer
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 @ 9p21.3 @ et al. 20 and adu 2020; N deletion Deletior the P200 region p 328 160 418 PAX5 g transcrip PAX5 de can be l suggest	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation , ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, M polycythemia ver lele burden) for the land <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espe 003). Deletions of lt ALL (Fizzotti et Aalarikova et al. could be treated of 9p21.3 are d 2 IKZF1-ERG, P33 probemix, which d 01294-L13278 01524-L27821 20386-L28368 ene, 9p13.2, indi- pt NM_016734.3. eletions are freque large and extend st ted to be an alter	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myeloprof ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP CDKN2A CDKN2B cated ligation site ent in B-ALL and in sometimes into th native mechanism	1431-1432 1520-1521 ligation site and exon means a somatic mutation of C cell proliferation. JAK2 p. bliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell preder been shown to associate et al. 1997) and are also bjitors, which are currently cher hematologic malignate P419 CDKN2A/2B-CDK4 p number and methylation of 9p21.3 9p21.3 9p21.3 9p21.3 es and exon numbering n BCR-ABL1 positive ALL ne CDKN2A/2B genes. No n of PAX5 inactivation a	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to be into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, contains GTCTCCACAGAA-ACATACTCCATA GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma (uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCCGCGGCTG CCTAGGAAAGGT-GATAGAGCTTAG for <i>PAX5</i> are according to the N cases (Coyaud et al. 2010). 9p dele- tote that amplifications of exon 2 & and could define a novel subgroup	0.1 kt of valine to hout myeloid s (~95%) ard on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertin oth pediatria (Streich et al homozygous et al. 2021) ire present in CDKN2A/2E 192.6 kt 5.3 kt 14.8 M t MANE Selec etions in ALI 5 have beer o in BCP-ALI
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in (≥1 % all D544de 208 § 9p21.3 @ 9p21.3 @ et al. 20 and adu 2020; N deletion Deletion gaza 160 418 PAX5 g transcrip PAX5 de can be l suggest (Schwal	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, M polycythemia ver lele burden) for the land <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espe 003). Deletions of ilt ALL (Fizzotti et Aalarikova et al. 2 n could be treated of 9p21.3 are d 2 IKZF1-ERG, P33 probemix, which d 01294-L13278 01524-L27821 20386-L28368 ene, 9p13.2, indi- pt NM_016734.3. eletions are freque large and extend at ted to be an alter b et al. 2017). Mo	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myeloprof ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP CDKN2A CDKN2B cated ligation site ent in B-ALL and in sometimes into th native mechanism	1431-1432 1520-1521 ligation site and exon means a somatic mutation of C cell proliferation. JAK2 p. bliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell preder been shown to associate et al. 1997) and are also bjitors, which are currently cher hematologic malignate P419 CDKN2A/2B-CDK4 p number and methylation of 9p21.3 9p21.3 9p21.3 9p21.3 es and exon numbering n BCR-ABL1 positive ALL ne CDKN2A/2B genes. No n of PAX5 inactivation a	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to be into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, contains GTCTCCACAGAA-ACATACTCCATA GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma of uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCCGCGGCTG CCTAGGAAAGGT-GATAGAGCTTAG for <i>PAX5</i> are according to the N cases (Coyaud et al. 2010). 9p delete that amplifications of exon 2 &	0.1 kt of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 M t tients (Bertir oth pediatrid (Streich et al homozygous et al. 2021) ire present ir CDKN2A/2E 192.6 kt 5.3 kt 14.8 M t MANE Selec etions in ALI 5 have beer o in BCP-ALI
cell lymp184154154JAK2 p.Select trJAK2 p.phenylamalignafound in(≥1 % allD544de208 §9p21.3 cet al. 20and adu2020; MdeletionDeletionDeletionregion p328160418PAX5 gtranscriPAX5 decan be lsuggest(Schwallprobem	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu ancies – in AML, M polycythemia ver lele burden) for the l and JAK2 p.N54 05672-L17742 deletions deletions are espe 03). Deletions of lt ALL (Fizzotti et Malarikova et al. could be treated as of 9p21.3 are d 2 IKZF1-ERG, P33 probemix, which d 01294-L13278 01524-L27821 20386-L28368 rene, 9p13.2, indi- pt NM_016734.3. eletions are freque large and extend s ted to be an alter b et al. 2017). Mo ixes.	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myeloprof ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible tetected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP CDKN2A CDKN2B cated ligation site ent in B-ALL and ir sometimes into th native mechanism ore <i>PAX5</i> probes a	1431-1432 1520-1521 ligation site and exon mean a somatic mutation of C a somatic mutation of C cell proliferation. JAK2 p. bliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell preder e been shown to associate et al. 1997) and are also bitors, which are currently her hematologic malignate 2419 CDKN2A/2B-CDK4 p number and methylation of 9p21.3 9p21.3 9p21.3 es and exon numbering n BCR-ABL1 positive ALL ne CDKN2A/2B genes. No n of PAX5 inactivation a are present in the P335 A	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to a into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, s GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma of uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCGCGGGCTG CCTAGGAAAGGT-GATAGAGCTTAG for <i>PAX5</i> are according to the M cases (Coyaud et al. 2010). 9p dele- bet that amplifications of exon 2 & ind could define a novel subgroup LL-IKZF1 and ME024 9p21 CDKN2	0.1 kt 0.1 kt 0 the MANE of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543 16.7 Mt tients (Bertir oth pediatric (Streich et al homozygous et al. 2021) ire present ir CDKN2A/2E 192.6 kt 5.3 kt 14.8 Mt MANE Select etions in ALL 5 have beer o in BCP-ALL 2A/2B regior
cell lymp 184 154 JAK2 p. Select tr JAK2 p. phenyla maligna found in ($\geq 1 \%$ all D544de 208 § 9p21.3 of et al. 200 and adu 2020; No deletion Deletion the P200 region p 328 160 418 PAX5 de can be l suggest (Schwal	phoma (Quesada of 14869-L16611 20383-L27819 .V617F mutation, ranscript NM_004 .V617F mutation, Inine and constitu- ncies – in AML, M polycythemia ver lele burden) for the land <i>JAK2</i> p.N54 05672-L17742 deletions deletions are espe 003). Deletions of ilt ALL (Fizzotti et Aalarikova et al. 2 n could be treated of 9p21.3 are d 2 IKZF1-ERG, P33 probemix, which d 01294-L13278 01524-L27821 20386-L28368 ene, 9p13.2, indi- pt NM_016734.3. eletions are freque large and extend at ted to be an alter b et al. 2017). Mo	et al. 2017; Schiep MYC, ex 3 9p24.1, indicated 972.4. in exon 14, is a ritive activation of of MDS and myeloprof ra (PV) (Jones et a e following JAK2 n 2-E543del. JAK2, ex 14; p.V617F (c.1849G>T) ecially frequent in <i>CDKN2A/2B</i> have al. 1995; Yamada 2020). Additionall with MAT2A inhible letected also in ot 5 ALL-IKZF1 and F etects both copy r MTAP CDKN2A CDKN2B cated ligation site ent in B-ALL and in sometimes into th native mechanism	1431-1432 1520-1521 ligation site and exon means a somatic mutation of C cell proliferation. JAK2 p. bliferative neoplasms (MI al. 2009). P520 MPN mix nutations frequently foun 2316-2315, reverse ALL, in 20% of B-cell preder been shown to associate et al. 1997) and are also bjitors, which are currently cher hematologic malignate P419 CDKN2A/2B-CDK4 p number and methylation of 9p21.3 9p21.3 9p21.3 9p21.3 es and exon numbering n BCR-ABL1 positive ALL ne CDKN2A/2B genes. No n of PAX5 inactivation a	AACAACCGAAAA-TGCACCAGCCCC GAACGAGCTAAA-ACGGAGCTTTTT umbering for <i>JAK2</i> are according to be into T resulting in substitution V617F mutation is detected throug PNs) – and the highest frequencie 2 contains probes for high detection d in MPN samples: <i>JAK2</i> p.V617F, contains GTCTCCACAGAA-ACATACTCCATA GTCTCCACAGAA-ACATACTCCATA cursor ALL and in 50% of T-ALL part te with unfavourable outcome in b frequent in mantle cell lymphoma (uggest that patients with <i>MTAP</i> y tested in clinical trials (Konteatis ancies. More <i>CDKN2A/2B</i> probes a probemixes and in the ME024 9p21 changes of these genes. GGTGGTGGTGCC-AGAGGCCATGTC AAGCGCTCAGAT-GCTCCGCGGCTG CCTAGGAAAGGT-GATAGAGCTTAG for <i>PAX5</i> are according to the N cases (Coyaud et al. 2010). 9p dele- tote that amplifications of exon 2 & and could define a novel subgroup	0.1 kb 0.1 kb 0 to the MANE of valine to hout myeloid s (~95%) are on sensitivity <i>JAK2</i> p.E543- 16.7 Mb tients (Bertin oth pediatric (Streich et al homozygous et al. 2021). ire present ir CDKN2A/2E 192.6 kb 5.3 kb 14.8 Mb MANE Select etions in ALL 5 have been o in BCP-ALL

Length (nt)	SALSA MLPA probe	Gene / Exon ^a	Location / Ligation site	<u>Partial</u> sequence ^b (24 nt adjacent to ligation site)	Distance to next probe
		dicated ligation s	-	for PTEN are according to the	
transcri	pt NM_000314.8.	-		h early treatment failure and may	
				rrez et al. 2009; Jotta et al. 2010;	
				B-cell lymphoma (Wang et al. 201	
				ted with these MLPA probes. Mo	
	sent in the P225 P		and P383 T-ALL probernio	kes. Probes to detect every exon o	of PTEN gene
445	13684-L18623	PTEN , ex 1	5 nt after exon 1	TTGACCTGTATC-CATTTCTGCGGC	101.0 kb
478 #	13696-L28441	PTEN , ex 9	2171-2170, reverse	AGAGAATTGTTC-CTATAACTGGTA	-
transcri Deletior leukaen	pt NM_000051.4. n of 11q22-q23, i nia (B-CLL) (Guari	ncluding <i>ATM</i> , is ni et al. 2012). Del	associated with an agg letions of ATM are also d	for <i>PTEN</i> are according to the pressive course of B-cell chronic etected in ALL and is found in 6% obemix, while probemixes P041 ar	lymphocytic of CLL cases
		every exon of the		obernix, while probernixed i official	
137	02675-L01168	ATM , ex 1	17 nt before exon 1	CACGCAGGGTTT-GAACCGGAAGCG	29.8 kb
453	20385-L27825	ATM , ex 12	1990-1991	AAATTCTTGTGA-GTCTCACTATGA	29.9 kb
203	08426-L08309	ATM , ex 25	3744-3745	GAGAAAGTTTCT-GAAACTTTTGGA	63.1 kb
427	08443-L08330	ATM , ex 58	8671-8672	AAAAATTCTTGG-ATCCAGCTATTT	-
neoplas	ms. More ETV6 pr	obes are present i	n the P335 ALL-IKZF1 and	elphia chromosome-negative myel I P414 MDS probemixes. Trisomy 1	2 is the most
follicula	r lymphoma and d	iffuse large B-cell I	lymphoma. More MDM2 a	etected in Non-Hodgkin and Hodgk nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix.	
follicula	r lymphoma and d	iffuse large B-cell I		nd CCND2 probes are present in the	e P323 CDK4-
follicula HMGA2	r lymphoma and d -MDM2 probemix.	iffuse large B-cell I More <i>CCND2</i> prob	lymphoma. More <i>MDM2</i> a bes are present in the P17	nd CCND2 probes are present in the 5 Tumour Gain probemix.	e P323 CDK4- 7.6 M b
follicula HMGA2 355	r lymphoma and d P-MDM2 probemix. 00498-L00084	iffuse large B-cell I More <i>CCND2</i> prob CCND2	lymphoma. More <i>MDM2</i> a bes are present in the P17 12p13.32	nd CCND2 probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA	e P323 CDK4- 7.6 M b 52.0 kb
follicula HMGA2 355 244 196 285	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>	ymphoma. More <i>MDM2</i> a bes are present in the P17 12p13.32 641-642 1959-1960 12 q 15	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGAG TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA	e P323 CDK4 7.6 Mb 52.0 kb 55.6 Mb
follicula HMGA2 355 244 196 285 13q del transcri Deletion deletion 2011). In gene (So	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3 is of 13q, especial is have been repor n T-cell lymphoblas chraders et al. 200	iffuse large B-cell I More CCND2 prob CCND2 ETV6, ex 3 ETV6, ex 8 MDM2), indicated ligatio I yon 13q14, occur rted to be more free stic lymphoma dele 9). More probes to	lymphoma. More $MDM2$ a pes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve o detect 13q copy number	nd CCND2 probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGAG TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG	P323 CDK4 7.6 Mb 52.0 kb 55.6 Mb MANE Selec al. 2001). <i>RB1</i> (Zhang et al. f this 27-exon 038 and P040
follicula HMGA2 355 244 196 285 13q del transcri Deletior deletion 2011). Il gene (So CLL pro	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3. ns of 13q, especial ns have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More pro	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligatio ly on 13q14, occur rted to be more fro stic lymphoma dele 9). More probes to obes for <i>RB1</i> are pro	lymphoma. More $MDM2$ a pes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve o detect 13q copy number esent in P335 ALL-IKZF1 p	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. <u>ATGCCAGTTGGG-CCGAAAGAGAGA</u> <u>TTTACTGGAGCA-GGGATGACGTAG</u> <u>TCTTGCAGACCA-AGAGGGACCCTG</u> <u>ACCAACAGACTT-TAATAACTTCAA</u> ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Plo probemix, while P047 RB1 covers the	e P323 CDK4- 7.6 Mb 52.0 kb 55.6 Mb MANE Selec al. 2001). <i>RB1</i> (Zhang et al. f this 27-exon 038 and P040 e whole gene.
follicula HMGA2 355 244 196 285 13q del transcri Deletion deletion 2011). In gene (So CLL pro 488	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3 as of 13q, especial as have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More pro 12565-L28442	iffuse large B-cell I More CCND2 prob CCND2 ETV6, ex 3 ETV6, ex 8 MDM2), indicated ligatio Ity on 13q14, occur rted to be more free stic lymphoma dele 9). More probes to obes for RB1 are pro- RB1, ex 23	lymphoma. More $MDM2$ a pes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve b detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Pl probemix, while P047 RB1 covers the CACCCTTACGGA-TTCCTGGAGGGA	e P323 CDK4 7.6 Mb 52.0 kb 55.6 Mb MANE Selec al. 2001). <i>RB1</i> (Zhang et al. f this 27-exon 038 and P040 e whole gene. 15.1 kb
follicula HMGA2 355 244 196 285 13q del transcri Deletior deletion 2011). It gene (Sr CLL pro	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3 is of 13q, especial is have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More pro 12565-L28442 01800-L28440	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligation (y on 13q14, occurred to be more free stic lymphoma delet 9). More probes to obses for <i>RB1</i> are pro- <i>RB1</i> , ex 23 <i>RB1</i> , ex 27	lymphoma. More $MDM2$ a bes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve o detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Pl orobemix, while P047 RB1 covers the CACCCTTACGGA-TTCCTGGAGGGA GAGTCCTGATAA-CCCAGGCCTGTC	e P323 CDK4 7.6 Mb 52.0 kb 55.6 Mb MANE Select al. 2001). <i>RB1</i> (Zhang et al f this 27-exor 038 and P040 e whole gene 15.1 kb 1.6 Mb
follicula HMGA2 355 244 196 285 13q del transcri Deletion deletion 2011). In gene (Sr CLL pro 488 470	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3, hs of 13q, especial have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More pro 12565-L28442 01800-L28440 04019-L17530	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligatio , indicated ligatio ly on 13q14, occur rted to be more frr stic lymphoma dele 9). More probes to obes for <i>RB1</i> are pro- <i>RB1</i> , ex 23 <i>RB1</i> , ex 27 <i>MIR15A</i>	lymphoma. More $MDM2$ a bes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve o detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271 13q14.3	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Pl probemix, while P047 RB1 covers the CACCCTTACGGA-TTCCTGGAGGGA	e P323 CDK4 7.6 Mt 52.0 kt 55.6 Mt MANE Select al. 2001). <i>RB1</i> (Zhang et al f this 27-exor 038 and P040 e whole gene 15.1 kt 1.6 Mt 33.0 kt
follicula HMGA2 355 244 196 285 13q del transcri Deletior deletion 2011). li gene (So CLL pro 488 470 165	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3 is of 13q, especial is have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More pro 12565-L28442 01800-L28440	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligation (y on 13q14, occurred to be more free stic lymphoma delet 9). More probes to obses for <i>RB1</i> are pro- <i>RB1</i> , ex 23 <i>RB1</i> , ex 27	lymphoma. More $MDM2$ a bes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve o detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Pl probemix, while P047 RB1 covers th CACCCTTACGGA-TTCCTGGAGGGA GAGTCCTGATAA-CCCAGGCCTGTC TGGATTTTGAAA-AGGTGCAGGCCA	e P323 CDK4 7.6 Mt 52.0 kt 55.6 Mt MANE Select al. 2001). <i>RB1</i> (Zhang et al f this 27-exor 038 and P040 e whole gene 15.1 kt 1.6 Mt 33.0 kt
follicula HMGA2 355 244 196 285 13q del transcri Deletion 2011). li gene (So CLL pro 488 470 165 190 384 17p (TF NM_000 bracket Isochro Chamai 10%) wi	r lymphoma and d -MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3 hs of 13q, especial hs have been report n T-cell lymphoblas chraders et al. 200 bemixes. More pro- 12565-L28442 01800-L28440 04019-L17530 04020-L17532 01589-L27826 P53 gene) & 17q of 0546.6. Exon num s (if different than mosome of 17q, i(nna et al. 2012). M	iffuse large B-cell I More <i>CCND2</i> prot CCND2 ETV6 , ex 3 ETV6 , ex 8 MDM2), indicated ligatio , indicated ligatio , ly on 13q14, occur rted to be more free stic lymphoma dele 9). More probes to obses for <i>RB1</i> are prot RB1 , ex 23 RB1 , ex 23 RB1 , ex 27 MIR15A DLEU2 DLEU1 deletions, indicate thering is accordia (17)(q10), is common loreover, deletion of outcome (Mougal	lymphoma. More $MDM2$ a bes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve o detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271 13q14.3 13q14.3 13q14.3 ed ligation sites for $TP53$ ing to LRG_321; the MAI non in AML and CML (20% of 17p and $TP53$ is charactian ian and O'Brien 2011) and	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Pl orobemix, while P047 RB1 covers the CACCCTTACGGA-TTCCTGGAGGGA GAGTCCTGATAA-CCCAGGCCTGTC TGGATTTTGAAA-AGGTGCAGGCCA CGCATGCGTAAA-AATGTCGGGAAA CCTTTTAATAGG-ATCTCCTGGA B are according to the MANE Sele NE exon numbering can be found b), and results in loss of 17p and <i>TF</i> cteristic for a rare, aggressive, sub- d is also found in patients with MC	P323 CDK4 7.6 Mb 52.0 kb 55.6 Mb 55.6 Mb MANE Selec al. 2001). <i>RB1</i> (Zhang et al. f this 27-exon 038 and P040 e whole gene. 15.1 kb 1.6 Mb 33.0 kb 228.1 kb 228.1 kb 253 (Kanagal- set of CLL (5-
follicula HMGA2 355 244 196 285 13q del transcri Deletior deletion 2011). I gene (S CLL pro 488 470 165 190 384 17p (TF NM_000 bracket Isochro Chamar 10%) wi al. 2020	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3, ns of 13q, especial as have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More proc 12565-L28442 01800-L28440 04019-L17530 04020-L17532 01589-L27826 253 gene) & 17q 0546.6. Exon num s (if different than mosome of 17q, i(nna et al. 2012). M ith a poor clinical o). More probes fo	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligatio I on 13q14, occur rted to be more fro stic lymphoma dele 9). More probes to obbes for <i>RB1</i> are pro- <i>RB1</i> , ex 23 <i>RB1</i> , ex 23 <i>RB1</i> , ex 27 <i>MIR15A</i> <i>DLEU2</i> <i>DLEU1</i> deletions, indicate hebering is accordi LRG). (17)(q10), is comm loreover, deletion o outcome (Mougal r <i>TP53</i> are presen	lymphoma. More $MDM2$ a pes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271 13q14.3 13q14.3 13q14.3 ed ligation sites for $TP53$ ing to LRG_321; the MAI non in AML and CML (20% of 17p and $TP53$ is charact ian and O'Brien 2011) and t in the P038 CLL-2, P040	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Pl probemix, while P047 RB1 covers the CACCCTTACGGA-TTCCTGGAGGGA GAGTCCTGATAA-CCCAGGCCTGTC TGGATTTTGAAA-AGGTGCAGGCCA CGCATGCGTAAA-AATGTCGGGAAA CCTTTTAATAGG-ATCTCTCCTGGA B are according to the MANE Sele NE exon numbering can be found b), and results in loss of 17p and <i>TF</i> cteristic for a rare, aggressive, sub- d is also found in patients with MC 0 CLL and P056 TP53 probemixes.	P323 CDK4- 7.6 Mb 52.0 kb 55.6 Mb 55.6 Mb MANE Selec al. 2001). <i>RB1</i> (Zhang et al. f this 27-exon 038 and P040 e whole gene. 15.1 kb 1.6 Mb 33.0 kb 228.1 kb 228.1 kb 228.1 kb cct transcript d in between 253 (Kanagal- set of CLL (5- CL (Ferrero et
follicula HMGA2 355 244 196 285 13q del transcri Deletion 2011). In gene (So CLL pro 488 470 165 190 384 17p (TF NM_000 bracket Isochro Chamar 10%) wi al. 2020 346 ±	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3. ns of 13q, especial is have been report n T-cell lymphoblas chraders et al. 200 bemixes. More proc 12565-L28442 01800-L28440 04019-L17530 04020-L17532 01589-L27826 253 gene) & 17q 0546.6. Exon num s (if different than mosome of 17q, i(nna et al. 2012). M ith a poor clinical of 0. More probes fo 00345-L00171	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligatio I yon 13q14, occur rted to be more free stic lymphoma dele 9). More probes to obes for <i>RB1</i> are pro- <i>RB1</i> , ex 23 <i>RB1</i> , ex 23 <i>RB1</i> , ex 27 <i>MIR15A</i> <i>DLEU2</i> <i>DLEU1</i> deletions , indicate hebring is accordin LRG). (17)(q10), is common loreover, deletion of outcome (Mougal r <i>TP53</i> are presen <i>TP53</i> , ex 11	hymphoma. More $MDM2$ a bes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve o detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271 13q14.3 13q14.3 13q14.3 ed ligation sites for $TP53$ ing to LRG_321; the MAI non in AML and CML (20% of 17p and $TP53$ is charao ian and O'Brien 2011) and t in the P038 CLL-2, P040 1269-1270	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Pl orobemix, while P047 RB1 covers the CACCCTTACGGA-TTCCTGGAGGGA GAGTCCTGATAA-CCCAGGCCTGTC TGGATTTTGAAA-AGGTGCAGGCCA CGCATGCGTAAA-AATGTCGGGAAA CCTTTTAATAGG-ATCTCTCCTGGA 3 are according to the MANE Sele NE exon numbering can be found 5), and results in loss of 17p and <i>TF</i> cteristic for a rare, aggressive, sub- d is also found in patients with MC 0 CLL and P056 TP53 probemixes. AAAGGGTCAGTC-TACCTCCCGCA	e P323 CDK4- 7.6 Mb 52.0 kb 55.6 Mb - MANE Selec al. 2001). <i>RB1</i> (Zhang et al. f this 27-exon 038 and P040 e whole gene. 15.1 kb 1.6 Mb 33.0 kb 228.1 kb 228.1 kb 228.1 kb - ect transcript d in between 253 (Kanagal- set of CLL (5- CL (Ferrero et 1.0 kb
follicula HMGA2 355 244 196 285 13q del transcri Deletion 2011). In gene (So CLL pro 488 470 165 190 384 17p (TF NM_000 bracket Isochro Chamar 10%) wi al. 2020 346 ± 392	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3. ns of 13q, especial is have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More pro 12565-L28442 01800-L28440 04019-L17530 04020-L17532 01589-L27826 253 gene) & 17q 0546.6. Exon num s (if different than mosome of 17q, i(nna et al. 2012). M ith a poor clinical 0). More probes fo 00345-L00171 01587-L17743	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligation (1) on 13q14, occur rted to be more free stic lymphoma dele 9). More probes to obses for <i>RB1</i> are pro- <i>RB1</i> , ex 23 <i>RB1</i> , ex 23 <i>RB1</i> , ex 27 <i>MIR15A</i> <i>DLEU2</i> <i>DLEU1</i> deletions , indicate hobering is accordia LRG). (17)(q10), is common loreover, deletion of outcome (Mougal r <i>TP53</i> are presen <i>TP53</i> , ex 11 <i>TP53</i> , ex 10	lymphoma. More $MDM2$ a bes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271 13q14.3 13q14.3 13q14.3 ed ligation sites for $TP53$ ing to LRG_321; the MAI non in AML and CML (20% of 17p and $TP53$ is charact ian and O'Brien 2011) and t in the P038 CLL-2, P040 1269-1270 1174-1175	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Plo- probemix, while P047 RB1 covers the CACCCTTACGGA-TTCCTGGAGGGA GAGTCCTGATAA-CCCAGGCCTGTC TGGATTTTGAAA-AGGTGCAGGCCA CGCATGCGTAAA-AATGTCGGGAAA CCTTTTAATAGG-ATCTCTCCTGGA 3 are according to the MANE Sele NE exon numbering can be found b), and results in loss of 17p and <i>TF</i> cteristic for a rare, aggressive, sub- d is also found in patients with MC 0 CLL and P056 TP53 probemixes. AAAGGGTCAGTC-TACCTCCCGCCA TTCCGAGAGCTG-AATGAGGCCTTG	e P323 CDK4- 7.6 Mb 52.0 kb 55.6 Mb 55.6 Mb MANE Selec al. 2001). <i>RB1</i> (Zhang et al. f this 27-exon 038 and P040 e whole gene. 15.1 kb 1.6 Mb 33.0 kb 228.1 kb 253 (Kanagal- set of CLL (5- CL (Ferrero et 1.0 kb 4.5 kb
follicula HMGA2 355 244 196 285 13q del transcri Deletion 2011). In gene (So CLL pro 488 470 165 190 384 17p (TF NM_000 bracket Isochro Chamar 10%) wi al. 2020 346 ± 392 252 ‡	r lymphoma and d MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3, ns of 13q, especial is have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More proc 12565-L28442 01800-L28440 04019-L17530 04020-L17532 01589-L27826 P53 gene) & 17q of 0546.6. Exon num s (if different than mosome of 17q, i(nna et al. 2012). M ith a poor clinical of 00345-L00171 01587-L17743 02376-L27832	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligation (y on 13q14, occur rted to be more free stic lymphoma dele 9). More probes to obses for <i>RB1</i> are pro- <i>RB1</i> , ex 23 <i>RB1</i> , ex 23 <i>RB1</i> , ex 27 <i>MIR15A</i> <i>DLEU2</i> <i>DLEU1</i> deletions , indicate nbering is accordi a LRG). (17)(q10), is common loreover, deletion of outcome (Mougal r <i>TP53</i> , ex 11 <i>TP53</i> , ex 10 <i>TP53</i> , ex 4b [5]	hymphoma. More $MDM2$ a bes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve o detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271 13q14.3 13q14.3 13q14.3 ed ligation sites for $TP53$ ing to LRG_321; the MAI non in AML and CML (20% of 17p and $TP53$ is charact ian and O'Brien 2011) and t in the P038 CLL-2, P040 1269-1270 1174-1175 546-547	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Pl robemix, while P047 RB1 covers th CACCCTTACGGA-TTCCTGGAGGGA GAGTCCTGATAA-CCCAGGCCTGTC TGGATTTTGAAA-AGGTGCAGGCA CGCATGCGTAAA-AATGTCGGGAAA CCTTTTAATAGG-ATCTCTCCTGGA 8 are according to the MANE Sele NE exon numbering can be found 5), and results in loss of 17p and <i>TF</i> cteristic for a rare, aggressive, sub- d is also found in patients with MC 0 CLL and P056 TP53 probemixes. AAAGGGTCAGTC-TACCTCCCGCA	e P323 CDK4- 7.6 Mb 52.0 kb 55.6 Mb 55.6 Mb Chang et al. f this 27-exon 038 and P040 e whole gene. 15.1 kb 1.6 Mb 33.0 kb 228.1 kb 228.1 kb ct transcript d in between 253 (Kanagal- set of CLL (5- CL (Ferrero et 1.0 kb 4.5 kb 12.4 kb
follicula HMGA2 355 244 196 285 13q del transcri Deletion 2011). In gene (So CLL pro 488 470 165 190 384 17p (TF NM_000 bracket Isochro Chamar 10%) wi al. 2020 346 ± 392	r lymphoma and d P-MDM2 probemix. 00498-L00084 13874-L17160 14054-L15652 07179-L17544 letions (<i>RB1 gene</i> , pt NM_000321.3. ns of 13q, especial is have been repor n T-cell lymphoblas chraders et al. 200 bemixes. More pro 12565-L28442 01800-L28440 04019-L17530 04020-L17532 01589-L27826 253 gene) & 17q 0546.6. Exon num s (if different than mosome of 17q, i(nna et al. 2012). M ith a poor clinical 0). More probes fo 00345-L00171 01587-L17743	iffuse large B-cell I More <i>CCND2</i> prob <i>CCND2</i> <i>ETV6</i> , ex 3 <i>ETV6</i> , ex 8 <i>MDM2</i>), indicated ligation (1) on 13q14, occur rted to be more free stic lymphoma dele 9). More probes to obses for <i>RB1</i> are pro- <i>RB1</i> , ex 23 <i>RB1</i> , ex 23 <i>RB1</i> , ex 27 <i>MIR15A</i> <i>DLEU2</i> <i>DLEU1</i> deletions , indicate hobering is accordia LRG). (17)(q10), is common loreover, deletion of outcome (Mougal r <i>TP53</i> are presen <i>TP53</i> , ex 11 <i>TP53</i> , ex 10	lymphoma. More $MDM2$ a bes are present in the P17 12p13.32 641-642 1959-1960 12q15 on sites and exon number r in >50% in CLL and man equent in high-risk ALL as etions of $RB1$ often involve detect 13q copy number esent in P335 ALL-IKZF1 p 2557-2558 3270-3271 13q14.3 13q14.3 13q14.3 ed ligation sites for $TP53$ ing to LRG_321; the MAI non in AML and CML (20% of 17p and $TP53$ is charact ian and O'Brien 2011) and t in the P038 CLL-2, P040 1269-1270 1174-1175	nd <i>CCND2</i> probes are present in the 5 Tumour Gain probemix. ATGCCAGTTGGG-CCGAAAGAGAGA TTTACTGGAGCA-GGGATGACGTAG TCTTGCAGACCA-AGAGGGACCCTG ACCAACAGACTT-TAATAACTTCAA ring for <i>RB1</i> are according to the tle cell lymphoma cases (Wolf et a s compared to non-selected cases e one or more of the last 10 exons o changes are present in the P037, Plo- probemix, while P047 RB1 covers the CACCCTTACGGA-TTCCTGGAGGGA GAGTCCTGATAA-CCCAGGCCTGTC TGGATTTTGAAA-AGGTGCAGGCCA CGCATGCGTAAA-AATGTCGGGAAA CCTTTTAATAGG-ATCTCTCCTGGA 3 are according to the MANE Sele NE exon numbering can be found b), and results in loss of 17p and <i>TF</i> cteristic for a rare, aggressive, sub- d is also found in patients with MC 0 CLL and P056 TP53 probemixes. AAAGGGTCAGTC-TACCTCCCGCCA TTCCGAGAGCTG-AATGAGGCCTTG	e P323 CDK4- 7.6 Mb 52.0 kb 55.6 Mb

5	MRC Holland	SALSA® MLPA®

Length (nt)	SALSA MLPA probe	Gene / Exon ^a	Location / Ligation site	Partial sequence ^b (24 nt adjacent to ligation site)	Distance to next probe	
Chromosome 18 Gains of chromosome 18 are common in ALL and lymphomas (especially in follicular lymphoma, diffuse large B-cell lymphoma and extranodal marginal zone B-cell lymphoma of MALT type) (Kim et al. 2013 and Masir et al. 2007).						
499	20552-L17745	RNMT	18p11.21	TACAATGAACTT-CAGGAAGTTGGT	35.2 M b	
125	21566-L27817	DCC	18 q 21.2	GAGTTGTGGCTT-ACAATGAATGGG	-	
321	on of CML (Johans 09065-L28369	CACNA1A	19p13.13	CTCAGGCCTTCT-ACTGGACTGTAC	46 M b	
	`	, ,	10-10 10		46 Mb	
400	06024-L05449	PRPF31	19 q 13.42	GGATCGGGTTCT-GGCAGGGAGAAC	-	
RUNX1 (AML1), 21q22.1, indicated ligation sites and exon numbering for <i>RUNX1</i> are according to the MANE Select transcript NM_001754.5. High-level amplifications of <i>RUNX1</i> , associated with intrachromosomal amplification of chromosome 21 (iAMP21), have been reported in childhood ALL and are associated with high risk of relapse and poor clinical outcome (Harrison et al. 2014). More probes for <i>RUNX1</i> and iAMP21 detection are present in the P327 iAMP21-ERG and for <i>RUNX1</i> in P437 Familial MDS-AML probemixes.						
					for RUNX1 in	
			1040-1041	TGGTCCTACGAT-CAGTCCTACCAA	for <i>RUNX1</i> in 249.5 kb	

^a See section Exon numbering on page 1 for more information.

^b Only partial probe sequences are shown. Complete probe sequences are available at www.mrcholland.com. Please notify us of any mistakes: info@mrcholland.com.

§ Mutation-specific probe. This probe will only generate a signal when the JAK2 p.V617F mutation is present.

 \pm SNVs rs80184930 and rs774269719 could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

9 SNV rs367797577 could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

‡ Ligation site of this probe is located on a common mutational hotspot both in germline and somatic samples as reported by IARC TP53 Database (http://p53.iarc.fr/). In case of apparent deletions, it is recommended to sequence theregion targeted by this probe.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Please note: not all known SNVs are mentioned in the table above. Single probe aberration(s) must be confirmed by another method.

Related SALSA MLPA probemixes

- P037/P038/P040 CLL: Contain probes for detecting characteristic copy number changes in CLL.
- P041/P042 ATM: Together these probemixes contain probes for every exon of the ATM gene.
- P056 TP53: Contains probes for every exon of TP53, and probes for CHEK2.
- P202 IKZF1-ERG: Contains probes for all IKZF1 and ERG exons, 9p21.3 (CDKN2A/2B) and 14q32 regions.
- P225 PTEN: Contains at least two probes for every exon of PTEN.
- P252 NB mix 2: Contains probes for chromosomes 2 (MYCN and ALK, among others) and 17.
- P323 CDK4-HMGA2-MDM2: Contains probes for CDK4, HMGA2 and MDM2 genes.
- P327 iAMP21-ERG: Contains probes for RUNX1 and ERG and probes for iAMP21 detection involved in ALL.
- P329 CLRF2-CSF2RA-IL3RA: Contains probes for CLRF2, CSF2RA, IL3RA region, involved in ALL.
- **P335 ALL-IKZF1:** Contains probes for all *IKZF1* exons, *CDKN2A/CDKN2B*, *EBF1*, Chr. X PAR-region, *PAX5*, *ETV6*, *BTG1* and *RB1*.
- P383 T-ALL: Contains probes for genomic regions with diagnostic and/or prognostic importance in T-ALL.
- P414 MDS: Contains probes for detecting characteristic copy number changes in MDS.
- P419 CDKN2A/2B-CDK4: Contains probes for CDKN2A/CDKN2B and CDK4.

- **P420 MPN mix1:** Contains probes for the following mutations frequently found in MPN samples: *JAK2* p.V617F, *JAK2* p.E543-D544del, *JAK2* p.N542-E543del, *MPL* p.W515L, *MPL* p.W515K, *KIT* p.D816V, *CALR* p.L367fs*46, *CALR* p.K385fs*47.
- **P425 Multiple Myeloma:** Contains probes targeting genes/regions that are suggested to be of prognostic relevance in multiple myeloma.
- **P437 Familial MDS-AML:** Contains probes for *RUNX1*, *CEBPA*, *GATA2*, *TERT* and *TERC*, including point mutations of *GATA2* p.R398W, p.T354M and *TERT* p.A10662T.
- **P520 MPN mix 2:** Contains probes for high detection sensitivity (≥1 % allele burden) for the following mutations frequently found in MPN samples: *JAK2* p.V617F, *JAK2* p.E543-D544del, *JAK2* p.N542-E543del, *MPL* p.W515L, *MPL* p.W515K, *KIT* p.D816V, *CALR* p.L367fs*46, *CALR* p.K385fs*47.
- ME024 9p21 CDKN2A/2B region: Contains probes for the detection of copy number and methylation changes of genes located at 9p21.3.

References

- Bardelli V et al. (2021). MYB rearrangements and over-expression in T-cell acute lymphoblastic leukemia. *Genes Chromosom Cancer*. 60:482-8.
- Bertin R et al. (2003). CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of monoand bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia. *Genes Chromosom Cancer*. 37:44-57.
- Chen JA et al. (2021). Lymphoid blast transformation in an MPN with BCR-JAK2 treated with ruxolitinib: putative mechanisms of resistance. *Blood Adv*. 5:3492-6.
- Cordoba I et al. (2012). Better prognosis for patients with del(7q) than for patients with monosomy 7 in myelodysplastic syndrome. *Cancer*. 118:127-33.
- Coyaud E et al. (2010). Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogenetique Hematologique study. *Blood*. 115:3089-97.
- Ferrero S et al. (2020). KMT2D mutations and TP53 disruptions are poor prognostic biomarkers in mantle cell lymphoma receiving high-dose therapy: a FIL study. *Haematologica*. 105:1604-12.
- Fizzotti M et al. (1995). Detection of homozygous deletions of the cyclin-dependent kinase 4 inhibitor (p16) gene in acute lymphoblastic leukemia and association with adverse prognostic features. *Blood*. 85:2685-90.
- Guarini A et al. (2012). ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. *Haematologica*. 97:47-55.
- Gutierrez A et al. (2009). High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. *Blood*. 114:647-50.
- Harrison CJ et al. (2014). An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. *Leukemia*. 28:1015-21.
- Hömig-Hölzel C and Savola S. (2012). Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. *Diagn Mol Pathol.* 21:189-206.
- Iacobucci I et al. (2009). Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). *Blood*. 114:2159-67.
- Johansson B et al. (2002). Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. *Acta Haematol.* 107:76-94.
- Jones AV et al. (2009). JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. *Nat Genet.* 41:446-9.
- Jotta P et al. (2010). Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia. *Leukemia*. 24:239-42.
- Kanagal-Shamanna R et al. (2012). Myeloid neoplasms with isolated isochromosome 17q represent a clinicopathologic entity associated with myelodysplastic/myeloproliferative features, a high risk of leukemic transformation, and wild-type TP53. *Cancer*. 118:2879-88.
- Kim S et al. (2013). Clinical significance of cytogenetic aberrations in bone marrow of patients with diffuse large B-cell lymphoma: prognostic significance and relevance to histologic involvement. *J Hematol Oncol.* 6:76.
- Konteatis Z et al. (2021). Discovery of AG-270, a First-in-Class Oral MAT2A Inhibitor for the Treatment of Tumors with Homozygous MTAP Deletion. *Journal of Medicinal Chemistry*. 64:4430-49.

- Liu Y et al. (2017). The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. *Nat Genet.* 49:1211-8.
- Malarikova D et al. (2020). Concurrent TP53 and CDKN2A Gene Aberrations in Newly Diagnosed Mantle Cell Lymphoma Correlate with Chemoresistance and Call for Innovative Upfront Therapy. *Cancers*. 12:2120.
- Martinelli G et al. (2009). IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. *J Clin Oncol.* 27:5202-7.
- Masir N et al. (2007). Follicular lymphoma with trisomy 18 exhibiting loss of BCL-2 expression on transformation to a large cell lymphoma. *J Clin Pathol*. 60:1061-4.
- Merup M et al. (1998). 6q Deletions in Acute Lymphoblastic Leukemia and Non-Hodgkin's Lymphomas. *Blood*. 91:3397-400.
- Mougalian SS and O'Brien S (2011) Adverse prognostic features in chronic lymphocytic leukemia. Oncology (Williston Park). 25:692-6, 699.
- Mullighan CG et al. (2008). BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. *Nature*. 453:110-4.
- Mullighan CG et al. (2009). Deletion of IKZF1 and Prognosis in Acute Lymphoblastic *Leukemia*. New England Journal of Medicine. 360:470-80.
- Pattabiraman DR et al. (2013). Role and potential for therapeutic targeting of MYB in leukemia. *Leukemia*. 27:269-77.
- Quesada AE et al. (2017). Increased MYC copy number is an independent prognostic factor in patients with diffuse large B-cell lymphoma. *Mod Pathol*. 30:1688-97.
- Schieppati F et al. (2020). An increase in MYC copy number has a progressive negative prognostic impact in patients with diffuse large B-cell and high-grade lymphoma, who may benefit from intensified treatment regimens. *Haematologica*. 105:1369-78.
- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwab C et al. (2017). Intragenic amplification of PAX5: a novel subgroup in B-cell precursor acute lymphoblastic leukemia? *Blood Adv*. 1:1473-7.
- Schraders M et al. (2009). High-resolution genomic profiling of pediatric lymphoblastic lymphomas reveals subtle differences with pediatric acute lymphoblastic leukemias in the B-lineage. *Cancer Genet Cytogenet*. 191:27-33.
- Schwab CJ et al. (2013). Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features. *Haematologica*. 98:1081-8.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Hum Mutat.* 28:205.
- Sole F et al. (2005). Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. *Haematologica*. 90:1168-78.
- Starczynowski DT et al. (2010). Deregulation of innate immune signaling in myelodysplastic syndromes is associated with deletion of chromosome arm 5q. *Cell Cycle*. 9:855-6.
- Streich L et al. (2020). Aggressive morphologic variants of mantle cell lymphoma characterized with high genomic instability showing frequent chromothripsis, CDKN2A/B loss, and TP53 mutations: A multi-institutional study. *Genes Chromosom Cancer*. 59:484-94.
- Szarzyńska-Zawadzka B et al. (2019). PTEN abnormalities predict poor outcome in children with T-cell acute lymphoblastic leukemia treated according to ALL IC-BFM protocols. *Am J Hematol*. 94:E93-E96.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.
- Vita M et al. (2006). The Myc oncoprotein as a therapeutic target for human cancer. *Semin Cancer Biol.* 16:318-30.
- Wall M et al. (2012). ETV6 deletion is a common additional abnormality in patients with myelodysplastic syndromes or acute myeloid leukemia and monosomy 7. *Haematologica*. 97:1933-6.

- Wang DM et al. (2011). Intermediate prognosis of 6q deletion in chronic lymphocytic leukemia. *Leuk Lymphoma*. 52:230-7.
- Wang X et al. (2018). Clinical Significance of PTEN Deletion, Mutation, and Loss of PTEN Expression in De Novo Diffuse Large B-Cell Lymphoma. *Neoplasia*. 20:574-93.
- Wolf S et al. (2001). B-cell neoplasia associated gene with multiple splicing (BCMS): the candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions. *Hum Mol Genet*. 10:1275-85.
- Yamada Y et al. (1997). Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia. *J Clin Oncol*. 15:1778-85.
- Zaliova M et al. (2019). ERG deletions in childhood acute lymphoblastic leukemia with DUX4 rearrangements are mostly polyclonal, prognostically relevant and their detection rate strongly depends on screening method sensitivity. *Haematologica*. 104:1407-16.
- Zhang J et al. (2011). Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. *Blood.* 118:3080-7.

See detailed information and references on included chromosomal areas and genes in Table 2.

Selected publications using SALSA MLPA Probemix P377 Hematologic Malignancies

- Alhourani E et al. (2014). Comprehensive chronic lymphocytic leukemia diagnostics by combined multiplex ligation dependent probe amplification (MLPA) and interphase fluorescence in situ hybridization (iFISH). *Mol Cytogenet*. 7:79.
- Alhourani E et al. (2015). Isochromosome 17q in Chronic Lymphocytic Leukemia. *Leuk Res Treatment*. 2015:1-6.
- Alhourani E et al. (2016). BIRC3 alterations in chronic and B-cell acute lymphocytic leukemia patients. *Oncol Lett*. 11:3240-6.
- Bănescu C et al. (2019). Presence of copy number aberration and clinical prognostic factors in patients with acute myeloid leukemia: an analysis of effect modification. *Pol Arch Intern Med.* 129:898-906.
- Konialis C et al. (2014) Routine application of a novel MLPA-based first-line screening test uncovers clinically relevant copy number aberrations in haematological malignancies undetectable by conventional cytogenetics. *Hematology*. 19:217-24.
- Othman MA et al (2015). High rates of submicroscopic aberrations in karyotypically normal acute lymphoblastic leukemia. *Mol Cytogenet*. 8(1).
- Othman MA et al. (2014) A Novel Cryptic Three-Way Translocation t(2;9;18)(p23.2;p21.3;q21.33) with Deletion of Tumor Suppressor Genes in 9p21.3 and 13q14 in a T-Cell Acute Lymphoblastic Leukemia. *Leuk Res Treatment*. 2014:357123.
- Othman MA et al. (2015). MLLT10 and IL3 rearrangement together with a complex four-way translocation and trisomy 4 in a patient with early T-cell precursor acute lymphoblastic leukemia: A case report. *Oncol Rep.* 33: 625-30.
- Othman MA et al. (2015). Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene. *J Histochem Cytochem*. 63:384-90.
- Othman MA et al. (2016). A novel IGH@ gene rearrangement associated with CDKN2A/B deletion in young adult B-cell acute lymphoblastic leukemia. *Oncol Lett*. 11:2117-22.
- Srinivasan VK et al (2020). Genomic alterations in chronic lymphocytic leukemia and their correlation with clinico-hematological parameters and disease progression. *Blood Research*. 55: 131-8.
- Tripon F et al. (2020). Co-occurrence of PML-RARA gene fusion, chromosome 8 trisomy, and FLT3 ITD mutation in a young female patient with de novo acute myeloid leukemia and early death. *Medicine*. 99:e19730.

P377 product history	
Version	Modification
B1	One <i>PAX5</i> specific probe is replaced. Changes in the probe length of several probes but no change in the sequences detected.
A3	The length of several probes has been changed, but no change in the sequence was detected.
A2	One flanking probe is replaced and the lengths of several probes are adjusted without changing the sequence detected.
A1	First release.

Implemented changes in the product description

Version B1-01 - 07 March 2024 (04P)

- Product description adapted to a new product version (version number changed, changes in Tables 1 and 2). - Ligation sites of the probes targeting EBF1 are updated according to the MANE Select transcript

NM_024007.5.

- Various minor textual or layout changes.

- Positive sample table adjusted for layout and to the latest results.

Version A3-01 - 26 October 2021 (04P)

- Product description rewritten and adapted to a new template (version number changed, changes in Table 1 and Table 2).

- Added results of tests on positive samples and reference standards.

- Various minor textual or layout changes.

- Transcript numbers of the probes targeting genes *MYC*, *ATM*, *RB1* and *TP53* updated according to the newest version.

- Ligation sites of the probes targeting genes *ATM* and *TP53* updated according to new version of the NM_ reference sequence.

- Warning added to Table 2 for probe specificity relying on a single nucleotide difference between target gene and related gene or pseudogene.

- For uniformity, the chromosomal locations and bands in this document are now all based on hg18 (NCBI36).

Version 12 – 30 June 2020 (T08)

- Warning below Table 1 and 2 modified for the PAX5 exon 10 probe (12521-L27827) at 374 nt – results should be interpreted cautiously and always confirmed with a different MLPA probemix (e.g. P335 ALL-IKZF1) or with a different method.

Version 11 – 06 February 2020 (T08)

- Related probemix information updated on page 1.

- Ligation sites of the probes targeting the *MYCN*, *EBF1*, *IKZF1*, *MYC*, *JAK2*, *PAX5* and *ETV6* genes updated according to newest versions of the NM_ reference sequences in Table 2.

- Information about P520 MPN mix 2 for high detection sensitivity (≥1 % allele burden) for the following mutations JAK2 V617F, JAK2 E543-D544del and JAK2 N542-E543del added to Table 2.

More information: www.mrcholland.com; www.mrcholland.eu	
***	MRC Holland bv; Willem Schoutenstraat 1 1057 DL, Amsterdam, The Netherlands
E-mail	info@mrcholland.com (information & technical questions) order@mrcholland.com (orders)
Phone	+31 888 657 200