

Product Description SALSA[®] MLPA[®] Probemix P425-B2 Multiple Myeloma

To be used with the MLPA General Protocol.

Version B2. As compared to version B1, one probe has a change in length, but no change in the sequence detected. For complete product history see page 10.

Catalogue numbers:

- P425-025R: SALSA MLPA Probemix P425 Multiple Myeloma, 25 reactions.
- **P425-050R:** SALSA MLPA Probemix P425 Multiple Myeloma, 50 reactions.
- **P425-100R:** SALSA MLPA Probemix P425 Multiple Myeloma, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mlpa.com).

Certificate of Analysis: Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mlpa.com.

Precautions and warnings: For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mlpa.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information: The SALSA MLPA Probemix P425 Multiple Myeloma is a **research use only (RUO)** assay for the detection of deletions or duplications in the following chromosomal regions and target genes: 1p32-p12, 1q21-q23, 5q31, chr. 9, 12p13, 13q14-q22 (*RB1-DLEU2-DIS3*), 14q32 (*TRAF3*), chr. 15, 16q12 (*CYLD*), 16q23 (*WWOX*) and 17p13 (*TP53*). These regions and genes are suggested to be of prognostic relevance in MM.

Multiple myeloma (MM) is a clonal B-cell disorder characterized by malignant proliferation of monoclonal plasma cells. MM cases present a common histological and morphological diagnosis, but enormous genetic and molecular complexity as well as marked variations in clinical characteristics and in patient survival. Recent progress in molecular cytogenetics has improved our understanding of the pathogenesis of MM and has also provided reasoning for molecular sub-classification of MM. Primary cytogenetic abnormalities detected in the initial stages of MM include trisomies (commonly involving chromosomes 5, 7, 9, 11, 13 and 15) and immunoglobulin heavy chain (IgH) translocations. Upon disease progression, secondary genetic alterations take place, frequently including del17p or monosomy 17, del13q or monosomy 13, del1p and 1p gain. MLPA has been shown to be a reliable technique to detect copy number alterations in MM (Alpar et al. 2013 and Boyle et al. 2014). As balanced translocations also have a high importance in the prognostic classification of MM patients, MLPA and i-FISH are suggested to be applied as complimentary techniques in this entity.

This SALSA MLPA Probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/

Exon numbering: The exon numbering used in this P425-B2 Multiple Myeloma product description is the exon numbering from the LRG_301 for *CDH1*; NG_029028.1 for *CKS1B*; LRG_491 for *CYLD*; NG_046914.2 for *DAP1*; NM_014953.5 for *DIS3*; LRG_517 for *RB1*; LRG_321 for *TP53*; LRG_229 for *TRAF3* and NG_011698.1 for *WWOX*. The exon numbering, LRG_ sequence, NG_ sequence and NM_ sequences have

been retrieved on 06/2020. As changes to the NCBI database can occur after release of this product description, exon numbering may not be up-to-date.

Probemix content: The SALSA MLPA Probemix P425-B2 Multiple Myeloma contains 57 MLPA probes with amplification products between 129 and 499 nucleotides (nt). This includes 46 probes for the following chromosomal regions commonly deleted or gained in MM: 1p32-p12, 1q21-q23, 5q31, chr. 9, 12p13, 13q14-q22 (*RB1-DLEU2-DIS3*), 14q32 (*TRAF3*), chr. 15, 16q12-q23 (*CYLD-WWOX*) and 17p13 (*TP53*). In addition, 11 reference probes are included that target relatively copy number stable regions in various cancer types including MM. Complete probe sequences are available online (www.mlpa.com) and the identity of the genes detected by the reference probes is available in Table 2.

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mlpa.com.

Length (nt)	Name
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)
88-96	D-fragments (low signal of 88 nt and 96 nt fragment indicates incomplete denaturation)
92	Benchmark fragment
100	X-fragment (X chromosome specific)
105	Y-fragment (Y chromosome specific)

MLPA technique: The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mlpa.com). More information on the use of MLPA in tumour applications can be found in Hömig-Hölzel and Savola (2012).

MLPA technique validation: Internal validation of the MLPA technique using 16 DNA samples from healthy individuals is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens: Extracted DNA free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

Reference samples: A sufficient number (\geq 3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from unrelated individuals who are from families without a history of multiple myeloma. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol.

Positive control DNA samples: MRC Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/home.html) have a diverse collection of biological resources which may be used as a positive control DNA sample in your MLPA experiments. Samples from the Coriell Institute and Leibniz Institute DSMZ have been tested with this P425-B2 probemix at MRC Holland and can be used as a positive control samples to detect several copy number alterations as described in the table below. The quality of cell lines can change; therefore samples should be validated before use.

Sample name			Altered target genes in P425-B2	Expected CNA
NA00803	Coriell Institute	1q23.3	NUF2, RP11s and PBX1	Heterozygous deletion
NA06038	Coriell Institute	1q23.3	PBX1	Heterozygous deletion

Product Description version B2-01; Issued 30 July 2020

Sample name	Source	Chromosomal position of CNA*	Altered target genes in P425-B2	Expected CNA
NA10989	Coriell Institute	9p24.1	JAK2	Heterozygous deletion
NA07981	Coriell Institute	12p13.31	CD27, VAMP1, NCAPD2 and CHD4	Heterozygous triplication / Homozygous duplication
NA14164	Coriell Institute	13q14.2-q22.1	RB1, DLEU2 and DIS3	Heterozygous deletion
NA05832	Coriell Institute	13q14.2-q22.1	RB1, DLEU2 and DIS3	Heterozygous duplication
NA03184	Coriell Institute	15q12-q26.3	GABRB3 and IGF1R	Heterozygous duplication
NA20375	Coriell Institute	15q12	GABRB3	Heterozygous deletion
NA03255	Coriell Institute	15q26.3	IGF1R	Heterozygous deletion
NA09687	Coriell Institute	16q23.1	WWOX	Heterozygous duplication

* Indicated chromosomal bands accommodate genes targeted by MLPA probes, however, the whole extent of copy number alteration (CNA) present in this cell line cannot be determined by this P425-B2 Multiple Myeloma probemix.

Data analysis: Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mlpa.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results: The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 . When this criteria is fulfilled, the following cut-off values for the DQ of the probes can be used to interpret MLPA results for autosomal chromosomes or pseudo-autosomal regions:

Copy number status	Dosage quotient
Normal	0.80 < DQ < 1.20
Homozygous deletion	DQ = 0
Heterozygous deletion	0.40 < DQ < 0.65
Heterozygous duplication	1.30 < DQ < 1.65
Heterozygous triplication/Homozygous duplication	1.75 < DQ < 2.15
Ambiguous copy number	All other values

Please note that these above mentioned dosage quotients are only valid for germline testing. Dosage quotients are affected both by percentage of tumour cells and by possible subclonality.

- Arranging probes according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in mosaic cases.
- False positive results: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Incomplete DNA denaturation (e.g. due to salt contamination) can lead to a decreased probe signal, in particular for probes located in or near a GC-rich region. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- Normal copy number variation in healthy individuals is described in the database of genomic variants: http://dgv.tcag.ca/dgv/app/home. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- Not all abnormalities detected by MLPA are pathogenic. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- Copy number changes detected by reference probes or flanking probes are unlikely to have any relation to the condition tested for.
- When running MLPA products, the capillary electrophoresis protocol may need optimization. False results can be obtained if one or more peaks are off-scale. For example, a duplication of one or more exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale peaks is

higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun the PCR products using either: lower injection voltage / injection time settings, or a reduced amount of sample by diluting PCR products.

P425 specific notes:

- The use of enrichment of CD138+ plasma cells increases the proportion of malignant myeloma cells in the sample and enhances sensitivity in detecting copy number aberrations compared to analysing samples with mixed cell populations (Boyle et al. 2014).

Limitations of the procedure:

- In most populations, the major cause of genetic defects in the chromosomal regions included in this probemix are small (point) mutations, most of which will not be detected by using SALSA MLPA Probemix P425 Multiple Myeloma.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNPs, point mutations, small indels) in the target sequence detected by a probe can cause false positive results. Mutations/SNPs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.
- MLPA analysis on tumour samples provides information on the *average* situation in the cells from which the DNA sample was purified. Gains or losses of genomic regions or genes may not be detected if the percentage of tumour cells is low. In addition, subclonality of the aberration affects the final ratio of the corresponding probe. Furthermore, there is always a possibility that one or more reference probes *do* show a copy number alteration in a patient sample, especially in samples with more chaotic karyotypes.

Confirmation of results: Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

COSMIC mutation database: http://cancer.sanger.ac.uk/cosmic. We strongly encourage users to deposit positive results in the COSMIC database. Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report false positive results due to SNPs and unusual results (e.g., a deletion of *TP53* exons 4b and 10 but not exon 7) to MRC Holland: info@mlpa.com.

This probemix was developed at MRC Holland in collaboration with Institute of Cancer Research (ICR), London.

		Chromosomal position (hg18) ^a				
Length (nt)	SALSA MLPA probe	Reference	Chr. 1	Other targets	Location (hg18) in kb	
64-105	Control fragments – see table in prober	nix content secti	on for more i	nformation		
129 ¥	Reference probe 20879-L25093	12q24			12-116.137	
134	Reference probe 13867-L23116	16p13			16-008.765	
138	TP53 probe 08304-L21074			17p13.1	17-007.518	
144	CD27 probe 16210-L24732			12p13.31	12-006.430	
148	RPE65 probe 04320-L14342		1p31.3		01-068.668	
152	TRAF3 probe 18232-L24568			14q32.32	14-102.406	
157	DIS3 probe 18233-L24283			13q22.1	13-072.248	
160	Reference probe 16254-L19129	20q11			20-034.979	
167	RP11-480N10 probe 18799-L24444		1 q 23.3		01-162.682	
172 «	CDKN2C probe 14652-L16304		1p33		01-051.212	
178	VAMP1 probe 16878-L24569			12p13.3	12-006.444	
184	PCDHB10 probe 16214-L18467			5q31.3	05-140.552	
190	DLEU2 probe 04020-L17532			13q14.2	13-049.554	
196	LEPR probe 08867-L08923		1p31.3		01-065.809	
202	Reference probe 03217-L24258	10q25			10-111.850	
207	TRAF3 probe 18235-L24259			14q32.32	14-102.439	
214	JAK2 probe 07444-L07092			9p24.1	09-005.041	
221	CKS1B probe 16216-L19011		1 q 21.3		01-153.217	
226 #	SLC25A2 probe 16218-L18471			5q31.3	05-140.663	
236	Reference probe 09100-L24261	4q25			04-110.907	
244	CKS1B probe 16220-L18473		1 q 21.3		01-153.214	
250	RB1 probe 01784-L17337			13q14.2	13-047.835	
256	TP53 probe 02376-L24733			17p13.1	17-007.519	
263	NUF2 probe 16224-L18477		1 q 23.3		01-161.592	
268	CYLD probe 16225-L18478			16q12.1	16-049.386	
274	Reference probe 10708-L18855	6p12			06-052.023	
280	RP11-541J2 probe 16226-L18479		1 q 23.3		01-162.602	
286	FAF1 probe 02877-L18857		1p33		01-051.026	
292	GABRB3 probe 10875-L11545		•	15q12	15-024.357	
299	CHD4 probe 16228-L18481			12p13.31	12-006.586	
306	COL11A1 probe 13242-L18856		1p21.1	•	01-103.177	
315	Reference probe 06741-L24262	8q12			08-061.816	
321	RP11-541J2 probe 16229-L18482	•	1 q 23.3		01-162.573	
328	DPYD probe 18797-L24263		1p21.3		01-097.431	
337	PBX1 probe 12517-L24268		1 q 23.3		01-163.083	
344	PCDHGA11 probe 16230-L24269		•	5q31.3	05-140.781	
351	WWOX probe 11972-L24270			16q23.1	16-076.691	
358	CHD4 probe 16231-L24271			12p13.3	12-006.550	
364	DAB1 probe 16232-L24272		1p32.2	•	01-057.253	
372	Reference probe 05024-L24735	2q32			02-189.568	
379	DIS3 probe 18237-L24734			13q22.1	13-072.234	
386	WWOX probe 02305-L18859			16q23.1	16-077.016	
391	TP53 probe 01587-L01159			17p13.1	17-007.515	
399	FAM46C probe 18949-L24912		1p12		01-117.967	
407	Reference probe 01237-L24913	10p14			10-012.019	
414	PCDHAC1 probe 16234-L24914			5q31.3	05-140.287	
421	COL5A1 probe 10394-L25152			9q34.3	09-136.837	
427	NCAPD2 probe 16235-L18488			12p13.31	12-006.511	
436 ‡	PLPP3 probe 18798-L24446		1p32.2	12910101	01-056.775	
445	DAB1 probe 16237-L24275		1p32.2		01-058.122	
454	RB1 probe 01799-L16912		19212	13q14.2	13-047.949	
461	PCDHA1 probe 16238-L24264			5q31.3	05-140.147	
467	IGF1R probe 07607-L24266	<u> </u>		15q26.3	15-097.300	
474 «	CYLD probe 16239-L24267			16q12.1	16-049.334	
483	PCDHB2 probe 16239-124207			5q31.3	05-140.454	
				CITCPC		

Table 1. SALSA MLPA Probemix P425-B2 Multiple Myeloma

SALSA MLPA Probemix P425 Multiple Myeloma

		Chromosomal position (hg18) ^a			
Length (nt)	SALSA MLPA probe	Reference	Chr. 1	Other targets	Location (hg18) in kb
490	Reference probe 14909-L17745	18p11			18-013.724
499	Reference probe 09870-L15194	2p15			02-061.126

¥ Changed in version B2. Minor alteration, no change in sequence detected.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

‡ PLPP3 gene name has been changed (PPAP2B previously) as we have adopted the novel HUGO name for this gene.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

Table 2. P425 probes arranged according to chromosomal location

1p deletions
Deletion of 1p is commonly described in MM and loss of 1p has been shown to correlate with unfavourable outcome
MM patients. Deletion of 1p31-32 (harbouring the FAF1, CDKN2C, PPAP2B and DAB1 genes) has been shown to be
independent prognostic factor in MM (McAvoy et al. 2008; Leone et al. 2008; Chng et al. 2010; Walker et al. 2010).
addition, loss of 1p21 is reported to be an adverse prognostic factor in myeloma (Chang et al. 2007; Chang et al. 201
Fine mapping of chromosome 1p deletions in MM identifies FAM46C at 1p12 associated with adverse survival (Boyd et
2011), and moreover, FAM46C is mutated in ~13% of MM patients (Chapman et al. 2011).
286 02877-L18857 FAF1 1p33 GGACCTGCATTT-AATCCAGCAAGT 0.2
172 « 14652-L16304 CDKN2C 1p33 TGCTGGAGTTTC-AAGCTGATGTTA 5.6
436 ‡ 18798-L24446 PLPP3 1p32.2 AGCACCATCAAG-CCTTACCACCGA 0.5
364 16232-L24272 DAB1 1p32.2; exon 14 CACAAACTGTTA-TGCCTTTGCCAG 0.9
445 16237-L24275 DAB1 1p32.2; exon 2 GACGATTCCTGA-CTCGTGGCCCCG 7.7
196 08867-L08923 LEPR 1p31.3 TGCTTTCGGAGT-GAGCAAGATAGA 2.9
148 04320-L14342 RPE65 1p31.3 CAGAATCAGGAG-ATAAGCAGGCTT 28.7
328 18797-L24263 DPYD 1p21.3 TGGGATGGACAG-AGTCCAGCTACT 5.7
306 13242-L18856 COL11A1 1p21.1 TTTCAGGGTGAA-ATTGGTGAGCCG 14.8
399 18949-L24912 FAM46C 1p12 CAGCCAGAACAT-CCCCTGAAGATG 3.5
To <i>CKS1B</i> g

1q amplifications and gains

Amplifications or gains of 1q21 (CKS1B) and 1q23.3 are associated with rapid disease progression and are signs of poor prognosis in MM (Shaughnessy et al. 2005; Hanamura et al. 2006; Avet-Loiseau et al. 2009; Walker et al. 2010). *Please note that RP11-541J2 and RP11-480N10 are not gene names but the codes for BAC clones that span this .67 nt

probe, is <i>PBX1</i> .						
particular gene-poor region	. The nearest ger	ne, starting at a distance	of approximately 40	00 kb telomeric f	from the 1	6

244	16220-L18473	CKS1B	1q21.3; exon 1	TTTGGCCGCTGA-GGGCACAAGGAA	3.1 k b	
221	16216-L19011	CKS1B	1q21.3; exon 2	TTCTGTTACAGA-CATGTCATGCTG	8.4 Mb	
263	16224-L18477	NUF2	1q23.3	AGCAGAGGACTC-CTATGCTAAGAT	1.0 Mb	
321 *	16229-L18482	RP11-541J2	1q23.3	GAACATCCCATA-ATGGATTTGAAG	28.5 k b	
280 *	16226-L18479	RP11-541J2	1q23.3	CCCTCATCCCTA-CCCTAGAGTCAC	80.1 k b	
167 *	18799-L24444	RP11-480N10	1q23.3	CTCTGAGAATCT-CCTCAAGAAGCC	0.4 Mb	
337	12517-L24268	PBX1	1q23.3	ACTGGAGGTCGA-AGCAATCAGCAA	-	
Reference	probes on 2p, 2q	and 4q				
499	09870-L15194	PEX13	2p15	TGAGGATGACCA-TGTAGTTGCCAG	128 Mb	
372	05024-L24735	COL3A1	2q32	GGTGTTCCAGGA-GCTAAAGGCGAA	-	
236	09100-L24261	CFI	4q25	TGTGTGCAACTA-ACAGGAGAAGCT	-	
5q ampli	5q amplifications and gains					

Amplification of 5g31.3 is reported to be a favourable prognostic factor in MM (Avet-Loiseau et al. 2009), however, this marker is not used for routine prognostication yet as controversary findings appear (Tapper et al. 2011). Moreover, the most sensitive and specific combination for the detection of hyperdiploidy in MM is suggested to be copy number detection of chromosomes 5, 9 and 15 (Wuilleme et al. 2005) 461

16238-L24264 **PCDHA1** GTATACAGAGTC-CACTTGTTAGAG 0.1 Mb 5q31.3

Length	SALSA MLPA			Partial sequence	Distance to
(nt)	probe	Gene	Location (hg18) / Exon	(24 nt adjacent to ligation site)	next probe
414	16234-L24914	PCDHAC1	5q31.3	GGGACTGTGTTA-TTCCGAGTTCAA	0.2 Mb
483	16240-L18493	PCDHB2	5q31.3	ATCCCAGTATCA-GCGAGATACGGG	0.2 Mb
184	16214-L18467	PCDHB10	5q31.3	TGGCTGTAACCA-ACTAGGAAATAA	0.1 Mb
226 #	16218-L18471	SLC25A2	5q31.3	ACAGCAGGAAGA-TGATGATGAAAC	0.1 Mb
344	16230-L24269		5q31.3	CACAACCAACCA-GCTCGAGAAACC	0.1 MD
-		PCDHGA11	5451.5		-
	probes on 6p and		1		
274	10708-L18855	PKHD1	6p12	TCTCAAGCTGAT-TCTGGAACGGCT	-
315	06741-L24262	CHD7	8q12	CACCTCAGTGAA-GTGAAGCACAGG	-
The most detection favourable 214	of chromosomes prognosis (Fonse 07444-L07092	5, 9 and 15 (W	uilleme et al. 2005). Hyperdi 9p24.1	rdiploidy in MM is suggested to b iploidy in MM is suggested to be CTAACACTGCCA -TCCCAAGACATT	
421	10394-L25152	COL5A1	9q34.3	TCTGACTCTGTT-TTCAGGGTGACC	-
Reference	probes on 10p an	d 10a			
407	01237-L24913	UPF2	10p14	TGCCATTCCTTT-GCATCTCAAAAG	99.8 Mb
202	03217-L24258	ADD3	10g25	AAGAGAGATATT-TTGACCGCATCA	-
	•	RDDJ	10025		
12p delet					4 F)
			· · · · · · · · · · · · · · · · · · ·	Avet-Loiseau et al. 2009; Li et al. 20	
144	16210-L24732	CD27	12p13.31	CCATCACTGCCA-ATGCTGAGTGTG	14.4 k b
178	16878-L24569	VAMP1	12p13.31	CTCCTGTTCTGA-GGAAGTGGGGCT	66.8 k b
427	16235-L18488	NCAPD2	12p13.31	GCACAGATCCTA-GGAAGTCTGTTC	39.2 k b
358	16231-L24271	CHD4	12p13.31; exon 40	ACCACCTCCACC-GCTGAGCAGTGA	35.7 k b
299	16228-L18481	CHD4	12p13.31; exon 2	ATATGGATGCAC-TTTTGAACAACA	109.5 Mb To NOS1 gene
					gene
	probe on 12q.	Need	10.01		
129	20879-L25093	NOS1	12q24	ACTGCTGAACCT-TTCCTCTGGGAC	-
(Elneaei et (Zojer et a frequently	q is detected in ~ al. 2003). Deletic al. 2000; Shaughn mutated in MM (Cl	on of <i>RB1</i> , along lessy et al. 200 hapman et al. 20	side abnormalities of chr.13,	f deletion harbours <i>RB1, DLEU1/2</i> is reported to be a sign of poor p tected in \sim 45% of MM patients a	prognosis in MM
250	01784-L17337	RB1	13q14.2; exon 8	GCGAGGTCAGAA-CAGGAGTGCACG	0.1 Mb
454	01799-L16912	RB1	13q14.2; exon 26	AGAGTCCAAATT-TCAGCAGAAACT	1.6 Mb
190	04020-L17532	DLEU2	13q14.3	CGCATGCGTAAA-AATGTCGGGAAA	22.7 Mb
379	18237-L24734	DIS3	13q22.1; exon 18	TGTATGATGCAA-GCTGTGTACTTC	14.0 k b
157	18233-L24283	DIS3	13q22.1; exon 6	GTAAGCTACAGC-AAGGCATAAAAT	-
Deletions of		cted in ~15% o		also commonly mutated in MM, an y (Keast et al. 2007; Du et al. 2011 GAGGACAAGTAC-AAGTGTGAGAAG	
207	18235-L24259	TRAF3	14q32.32; exon 11	AAGAGCAGCGTG-GAGTCCCTCCAG	
Chromoso The most	ome 15 gains sensitive and spe	cific combinatic	n for the detection of hyper	rdiploidy in MM is suggested to b iploidy in MM is suggested to be	
	prognosis (Fonse				
292	10875-L11545	GABRB3	15q12	CACCACTITGTT-TCTTTTCTAGGG	72.9 Mb
467	07607-L24266	IGF1R	15q26.3	CATGGTAGCCGA-AGATTTCACAGT	
	probe on 16p				
134	13867-L23116	ABAT	16p13	ACTTTGTGGAGA-AGCTCCGGCAGT	40.5 Mb To CYLD gene
Loss of th		ected ~40% of		r et al. 2010) and deletion of $16p$	012 (CYLD) and
				me in MM (Jenner et al. 2007). TGGTTCTACACA-GCCACCCGGAGT	E1.4 L4
474 «	16239-L24267	CYLD	16q12.1; exon 2	I GOTI CIACACA-GUCALUUGGAGI	51.4 k b

Length (nt)	SALSA MLPA probe	Gene	Location (hg18) / Exon	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe
268	16225-L18478	CYLD	16q12.1; exon 19	AGGCTGAATCAT-AAATATAACCCA	27.3 Mb
351	11972-L24270	WWOX	16q23.1; exon 1	AACCACCAAGGA-CGGCTGGGTTTA	0.3 Mb
386	02305-L18859	WWOX	16q23.1; exon 7	GGCCTGGAGACC-ACCTTTCAAGTG	-

TP53 deletions, at 17p13.1

Several studies have shown that 17p13 deletions, targeting the *TP53* tumour suppressor gene, are associated with poor clinical outcome in MM (Drach et al. 1998; Fonseca et al. 2003; Chang et al. 2005; Avet-Loiseau et al. 2007; Walker et al. 2010; Boyd et al. 2011). According to multiple risk stratification approaches, del 17p is a determinant of stage III/ high risk disease (Palumbo et al. 2015; Chng et al. 2014; Mikhael et al. 2013).

non aloca		Lord, ching		515/1	
391	01587-L01159	TP53	17p13.1; exon 10	TTCCGAGAGCTG-AATGAGGCCTTG	3.1 k b
138	08304-L21074	TP53	17p13.1; exon 7	CTGTCCTGGGAG-AGACCGGCGCAC	1.4 k b
256	02376-L24733	TP53	17p13.1; exon 4b	CAAGATGTTTTG-CCAACTGGCCAA	-
Reference	e probes on 18p a	nd 20			
490	14909-L17745	RNMT	18p11	TACAATGAACTT-CAGGAAGTTGGT	-
160	16254-L19129	SAMHD1	20q11	GGCGTCCTGAAA-ACAAAAGCTTCC	-

« This probe is located within, or close to, a very strong CpG island. A low signal of this probe can be due to incomplete sample DNA denaturation, e.g. due to the presence of salt in the sample DNA.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

‡ PLPP3 gene name has been changed (*PPAP2B* previously) as we have adopted the novel HUGO name for this gene.

a) See above section on exon numbering for more information.

b) Only partial probe sequences are shown. Complete probe sequences are available at www.mlpa.com. Please notify us of any mistakes: info@mlpa.com.

Related SALSA MLPA probemixes

- P037 CLL-1 and P038 CLL-2: Contains 8 and 7 probes, respectively, for the 13q region (RB1-DLEU1/2/7).
- P056 TP53: Contains probes for each exon of *TP53* gene.
- P063 FHIT-WWOX: Contains probes for each exon of *WWOX* gene.

References

- Avet-Loiseau H et al. (2007). Genetic Abnormalities and Survival in Multiple Myeloma: The Experience of the Intergroupe Francophone Du Myélome. *Blood.* 109:3489-95.
- Avet-Loiseau H et al. (2009). Prognostic Significance of Copy-Number Alterations in Multiple Myeloma. J Clin Oncol. 27:4585-90.
- Binder M et al (2017). Prognostic Implications of Abnormalities of Chromosome 13 and the Presence of Multiple Cytogenetic High-Risk Abnormalities in Newly Diagnosed Multiple Myeloma. *Blood Cancer J.* 7:e600.
- Boyd KD et al. (2011). Mapping of Chromosome 1p Deletions in Myeloma Identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as Being Genes in Regions Associated With Adverse Survival. *Clin Cancer Res.* 17:7776-84.
- Chng WJ et al. (2014). IMWG Consensus on Risk Stratification in Multiple Myeloma. Leukemia. 28:269-77.
- Drach J et al. (1998). Presence of a p53 Gene Deletion in Patients With Multiple Myeloma Predicts for Short Survival After Conventional-Dose Chemotherapy. *Blood.* 92:802-9.
- Du J et al. (2011). Polymorphisms of Nuclear factor-κB Family Genes Are Associated With Development of Multiple Myeloma and Treatment Outcome in Patients Receiving Bortezomib-Based Regimens. *Haematologica*. 96:729-37.
- Elneaei MO et al. (2003). Gene Abnormalities in Multiple Myeloma; The Relevance of TP53, MDM2, and CDKN2A. *Haematologica*. 88:529-37.
- Chang H et al. (2005). p53 Gene Deletion Detected by Fluorescence in Situ Hybridization Is an Adverse Prognostic Factor for Patients With Multiple Myeloma Following Autologous Stem Cell Transplantation. *Blood.* 105:358-60.

- Chang H et al. (2007). Chromosome 1p21 Deletion Is a Novel Prognostic Marker in Patients With Multiple Myeloma. *Br J Haematol.* 139:51-54.
- Chang H et al. (2010). 1p21 Deletions Are Strongly Associated With 1q21 Gains and Are an Independent Adverse Prognostic Factor for the Outcome of High-Dose Chemotherapy in Patients With Multiple Myeloma. *Bone Marrow Transplant*. 45:117-21.
- Chapman MA et al. (2011). Initial Genome Sequencing and Analysis of Multiple Myeloma. *Nature*. 471:467-72.
- Chng WJ et al. (2010). Correlation Between Array-Comparative Genomic Hybridization-Defined Genomic Gains and Losses and Survival: Identification of 1p31-32 Deletion as a Prognostic Factor in Myeloma. *Leukemia*. 24:833-42.
- Fonseca R et al. (2003). Clinical and Biologic Implications of Recurrent Genomic Aberrations in Myeloma. *Blood.* 101:4569-75.
- Hanamura L et al. (2006). Frequent Gain of Chromosome Band 1q21 in Plasma-Cell Dyscrasias Detected by Fluorescence in Situ Hybridization: Incidence Increases From MGUS to Relapsed Myeloma and Is Related to Prognosis and Disease Progression Following Tandem Stem-Cell Transplantation. *Blood.* 108:1724-32.
- Hömig-Hölzel C and Savola S. (2012). Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. *Diagn Mol Pathol.* 21:189-206.
- Jenner MW et al. (2007). Gene Mapping and Expression Analysis of 16q Loss of Heterozygosity Identifies WWOX and CYLD as Being Important in Determining Clinical Outcome in Multiple Myeloma. *Blood.* 110:3291-300.
- Keast JJ et al. (2007). Promiscuous Mutations Activate the Noncanonical NF-kappaB Pathway in Multiple Myeloma. *Cancer Cell.* 12:131-44.
- Leone PE et al. (2008). Deletions of CDKN2C in Multiple Myeloma: Biological and Clinical Implications. *Clin Cancer Res.* 14:6033-41.
- Li F et al. (2015). Heterogeneous Chromosome 12p Deletion Is an Independent Adverse Prognostic Factor and Resistant to Bortezomib-Based Therapy in Multiple Myeloma. *Oncotarget*. 6:9434-44.
- McAvoy S. et al. (2008). Disabled-1 Is a Large Common Fragile Site Gene, Inactivated in Multiple Cancers. Genes Chromosomes Cancer. 47:165-74.
- Mikhael JR et al. (2013). Management of Newly Diagnosed Symptomatic Multiple Myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Guidelines 2013. *Mayo Clin Proc.* 88:360-76.
- Morgan G et al. (2012). The Genetic Architecture of Multiple Myeloma. *Nat Rev Cancer*. 12:335-48.
- Palumbo A et al. (2015). Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. *J Clin Oncol.* 33:2863-9.
- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Hum Mutat.* 28:205.
- Shaughnessy J et al. (2003). Continuous Absence of Metaphase-Defined Cytogenetic Abnormalities, Especially of Chromosome 13 and Hypodiploidy, Ensures Long-Term Survival in Multiple Myeloma Treated With Total Therapy I: Interpretation in the Context of Global Gene Expression. *Blood.* 101:3849-56.
- Shaughnessy J et al. (2005). Amplification and Overexpression of CKS1B at Chromosome Band 1q21 Is Associated With Reduced Levels of p27Kip1 and an Aggressive Clinical Course in Multiple Myeloma. *Hematology*. 10:117-26.
- Tapper W et al. (2011). Heterogeneity in the Prognostic Significance of 12p Deletion and Chromosome 5 Amplification in Multiple Myeloma. *J Clin Oncol.* 29:e37-9.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.
- Walker BA et al. (2010). A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. *Blood.* 116:56-65.
- Wuilleme S et al. (2005). Ploidy, as Detected by Fluorescence in Situ Hybridization, Defines Different Subgroups in Multiple Myeloma. *Leukemia*. 19:275-8.
- Zojer N et al. (2000). Deletion of 13q14 Remains an Independent Adverse Prognostic Variable in Multiple Myeloma Despite Its Frequent Detection by Interphase Fluorescence in Situ Hybridization. *Blood.* 95:1925-30.

Selected publications using SALSA MLPA Probemix P425 Multiple Myeloma

- Alpar D et al. (2013). Multiplex ligation-dependent probe amplification and Fluorescence In Situ Hybridization are complementary techniques to detect cytogenetic abnormalities in multiple myeloma. *Genes Chromosomes Cancer*. 52:785-93.
- Boyle EM et al. (2015). A molecular diagnostic approach able to detect the recurrent genetic prognostic factors typical of presenting myeloma. *Genes Chromosomes Cancer.* 54:91-8.
- Gupta R et al. (2018). Nucleic acid based risk assessment and staging for clinical practice in multiple myeloma. *Ann Hematol.* 97:2447-54.
- Jones JR et al. (2019). Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients. Haematologica. 104:1440-50.
- Kosztolányi S et al. (2018). High-throughput copy number profiling by digital multiplex ligation-dependent probe amplification in multiple myeloma. *J Mol Diagn.* 20:777-88.
- Shah V et al. (2018). Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. *Leukemia*. 32:102-10.
- Shah V et al. (2018). Sub-clonal TP53 copy number is associated with prognosis in multiple myeloma. *Blood.* 132:2465-9.
- Sommaluan S et al. (2017). The utilization of karyotyping, iFISH, and MLPA for the detection of recurrence genetic aberrations in multiple myeloma. *Asian Pac J Cancer Prev.* 18:3135-42.
- Zang M et al. (2015). Detection of recurrent cytogenetic aberrations in multiple myeloma: A comparison between MLPA and iFISH. *Oncotarget.* 6:34276-87.

P425 Product history

Version	Modification
B2	One probe has a change in length, but no change in the sequence detected.
B1	New probes were added to <i>FAM46C, DIS3, TRAF3</i> , chr.9 and chr.15. Moreover, several reference probes were replaced.
A1	First release.

Implemented changes in the product description

Version B2-01 — 30 July 2020 (02P)

- Product description rewritten and adapted to a new template.
- Various minor textual and layout changes.
- Small changes of probe lengths in Table 1 and 2 in order to better reflect the true lengths of the amplification products.
- Several new references added on pages 8-9.
- Version 08 07 December 2018 (T08)
- For uniformity, the chromosomal positions and bands in this document are now all based on hg18 (NCBI36).
- New references added on page 1.
- Several minor textual changes throughout the document.

Version 07 – 27 March 2018 (T08)

- Gene name adapted for *DLEU2*, on page 1 and in Table 2.
- New reference added on page 1.
- Warning added to Table 2 for probe specificity relying on a single nucleotide difference between target gene and related gene or pseudogene.

Version 06 – 12 April 2017 (T08)

- Product description adapted to a new product version (version number changed, lot number added, small changes in Table 1 and Table 2, new picture included).
- Small changes of probe lengths in Table 1 and Table 2 in order to better reflect the true lengths of the amplification products.
- New reference added on page 1.
- Various minor textual and layout changes.
- Ligation sites of the probes targeting the *DIS3* and *WWOX* genes are updated according to new versions of the NM_reference sequence.

Version 05 – 15 April 2016 (T08)

- *PLPP3* gene name has been changed (*PPAP2B* previously) as we have adopted the novel HUGO name for this gene.

Version 04 (T06)

- New reference added on page 1 for the probemix.
- Minor textual corrections on page 1.
- Updated link for "Database of Genomic Variants".
- "Peak area" replaced with "peak height".

Version 03 (T03)

- Product description adapted to a new product version (version number changed, lot number added, new pictures included).
- Various textual changes on page 1 & 2 and in table 2.
- Version 02 (48)
- Electropherogram pictures using the new MLPA buffer (introduced in December 2012) added.

Version 01 (T01)

- Not applicable, new product description.

More information: www.mlpa.com; www.mlpa.eu		
	MRC-Holland bv; Willem Schoutenstraat 1 1057 DL, Amsterdam, The Netherlands	
E-mail	info@mlpa.com (information & technical questions); order@mlpa.com (orders)	
Phone	+31 888 657 200	