

Product Description SALSA® MLPA® Probemix P191-B4 X-linked Alport syndrome mix 1 & P192-B4 X-linked Alport syndrome mix 2

To be used with the MLPA General Protocol.

Version B4

For complete product history see page 9.

Catalogue numbers:

- **P191-025R:** SALSA MLPA Probemix P191 X-linked Alport syndrome mix 1, 25 reactions.
- P191-050R: SALSA MLPA Probemix P191 X-linked Alport syndrome mix 1, 50 reactions.
- P191-100R: SALSA MLPA Probemix P191 X-linked Alport syndrome mix 1, 100 reactions.
- P192-025R: SALSA MLPA Probemix P192 X-linked Alport syndrome mix 2, 25 reactions.
- **P192-050R:** SALSA MLPA Probemix P192 X-linked Alport syndrome mix 2, 50 reactions.
- P192-100R: SALSA MLPA Probemix P192 X-linked Alport syndrome mix 2, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mrcholland.com).

Certificate of Analysis

Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mrcholland.com.

Precautions and warnings

For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mrcholland.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information

The SALSA MLPA Probemixes P191 X-linked Alport syndrome mix 1 and P192 X-linked Alport syndrome mix 2 are **research use only (RUO)** assays for the detection of deletions or duplications in the *COL4A5* gene, which is associated with X-linked Alport syndrome (XLAS).

Alport syndrome (AS) is an inherited disorder of the basement membrane, resulting in progressive renal failure due to glomerulonephropathy, variable sensorineural hearing loss, and variable ocular anomalies. It is a genetically heterogeneous disorder, with all forms resulting from mutations in the genes encoding the alpha-3 (COL4A3; 2q36.3), alpha-4 (COL4A4; 2q36.3), and alpha-5 (COL4A5; Xq22.3) chains of type IV collagen, which is a major structural component of the basement membrane (Nozu et al. 2019). AS can be divided into X-Linked AS (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by mutations in the COL4A5 gene and accounts for approximately 80% of AS, whereas ARAS and ADAS are caused by mutations in the COL4A3 and COL4A4 genes and account for approximately 15% and 5% of AS, respectively (Nozu K et al. 2019).

The first exon of *COL4A5* is located very close to the first exon of the *COL4A6* gene which encodes one of the other type IV collagen subunits. The two genes are arranged head-to-head and share a common promoter region. Deletions in the *COL4A5* gene that extend into the *COL4A6* gene result in Alport syndrome-diffuse leiomyomatosis (AS-DL)(Nozu K et al. 2017, Zhou X et al 2021).

More information is available at https://www.ncbi.nlm.nih.gov/books/NBK1207/

This SALSA MLPA probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Matched Annotation from NCBI and EMBL-EBI (MANE): http://www.ncbi.nlm.nih.gov/refseq/MANE/ Tark – Transcript Archive (MANE) database: http://tark.ensembl.org/ Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/

Exon numbering

The *COL4A5* exon numbering used in this P191-B4 X-linked Alport syndrome mix 1 and P192-B4 X-linked Alport syndrome mix 2 product description is the exon numbering from the MANE project (release version 1.0) based on MANE Select transcript NM_033380.3, as indicated in Table 2. The *COL4A6* exon numbering used is the exon numbering from the MANE project (release version 1.0) based on MANE Select transcript NM_033641.4, as indicated in Table 2. Compared to the MANE select for *COL4A6*, NM_001847.4 utilizes an alternative exon 1 (exon 1A). As changes to the databases can occur after release of this product description, the NM_ sequence and exon numbering may not be up-to-date.

Probemix content

The SALSA MLPA Probemix P191-B4 X-linked Alport syndrome mix 1 contains 37 MLPA probes with amplification products between 130 and 490 nucleotides (nt). This includes 26 probes for the *COL4A5* gene and one probe for the *COL4A6* gene. In addition, ten reference probes are included that detect locations on the X-chromosome. The SALSA MLPA Probemix P192-B4 X-linked Alport syndrome mix 2 contains 37 MLPA probes with amplification products between 130 and 444 nt. This includes 25 probes for the *COL4A5* gene and two probes for the *COL4A6* gene. In addition, ten reference probes are included that detect locations on the X-chromosome. Complete probe sequences and the identity of the genes detected by the reference probes are available online (www.mrcholland.com).

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mrcholland.com.

Length (nt)	Name
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)
88-96	D-fragments (low signal indicates incomplete denaturation)
92	Benchmark fragment
100	X-fragment (X chromosome specific)
105	Y-fragment (Y chromosome specific)

MLPA technique

The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mrcholland.com).

MLPA technique validation

Internal validation of the MLPA technique using 16 DNA samples from healthy individuals of the same sex is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens

Extracted DNA, free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

Reference samples

A sufficient number (\geq 3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from different unrelated individuals who are from families without a history of Alport syndrome. It is recommended to use samples of the same sex to facilitate interpretation. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol (www.mrcholland.com).

Positive control DNA samples

MRC Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/) have diverse collections of biological resources which may be used as positive control DNA samples in your MLPA experiments. The quality of cell lines can change; therefore samples should be validated before use.

Data analysis

Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mrcholland.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results

The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 and the final ratio (FR) of each individual reference probe in the patient samples should be between 0.80 and 1.20. When these criteria are fulfilled, the following cut-off values for the FR of the probes can be used to interpret MLPA results:

Copy Number status: Male samples	Final ratio
Normal	0.80 < FR < 1.20
Deletion	FR = 0
Duplication	1.65 < FR < 2.25
Ambiguous copy number	All other values

Copy Number status: Female samples	Final ratio
Normal	0.80 < FR < 1.20
Homozygous deletion	FR = 0
Heterozygous deletion	0.40 < FR < 0.65
Heterozygous duplication	1.30 < FR < 1.65
Heterozygous triplication/homozygous duplication	1.75 < FR < 2.15
Ambiguous copy number	All other values

Note: The term "dosage quotient", used in older product description versions, has been replaced by "final ratio" to become consistent with the terminology of the Coffalyser.Net software. (Calculations, cut-offs and interpretation remain unchanged.) Please note that the Coffalyser.Net software also shows arbitrary borders as part of the statistical analysis of results obtained in an experiment. As such, arbitrary borders are different from the final ratio cut-off values shown here above.

- <u>Arranging probes</u> according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in mosaic cases. Analysis of parental samples may be necessary for correct interpretation of complex results.
- <u>False positive results</u>: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can be one cause. Incomplete DNA denaturation (e.g. due to salt contamination) can also lead to a decreased probe signal, in particular for probes located in or near a GC-rich region. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- <u>Normal copy number variation</u> in healthy individuals is described in the database of genomic variants: <u>http://dgv.tcag.ca/dgv/app/home</u>. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- Not all abnormalities detected by MLPA are pathogenic. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- <u>Copy number changes detected by reference probes</u> or flanking probes are unlikely to have any relation to the condition tested for.
- <u>False results can be obtained if one or more peaks are off-scale</u>. For example, a duplication of one or more
 exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale
 peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net
 software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun
 the PCR products using either: a lower injection voltage or a shorter injection time, or a reduced amount of
 sample by diluting PCR products.

Limitations of the procedure

- In most populations, the major cause of genetic defects in the COL4A5 gene are small (point) mutations, which will not be detected by using SALSA MLPA Probemix P191 X-linked Alport syndrome mix 1 and P192 X-linked Alport syndrome mix 2.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can cause false
 positive results. Mutations/SNVs (even when >20 nt from the probe ligation site) can reduce the probe
 signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe
 oligonucleotide to the sample DNA.

Confirmation of results

Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

Alport mutation database:

https://www.ncbi.nlm.nih.gov/clinvar/?term=col4a5%5Bgene%5D&redir=gene

https://databases.lovd.nl/shared/genes/COL4A5. We strongly encourage users to deposit positive results in the ClinVar database and/or the Leiden Open Variation Database (LOVD). Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report copy number changes detected by the reference probes, false positive results due to SNVs and unusual results (e.g., a duplication of *COL4A5* exons 4 and 6 but not exon 5) to MRC Holland: info@mrcholland.com.

Longth (nt)		Chromosomal position (hg18) ^a		
Length (nt)	SALSA MLPA probe	Reference	COL4A5	COL4A6
64-105	Control fragments – see table in probe	mix content section f	for more information	
130	Reference probe 22528-L31699	Xq23		
136	COL4A5 probe 05851-L05251		Exon 1	
142	COL4A5 probe 05861-L08942		Exon 9	
150	COL4A5 probe 05871-L31708		Exon 19	
155	Reference probe 22533-L31884	Xq21		
160 ±	COL4A5 probe 05862-L21842		Exon 10	
171	COL4A5 probe 20677-L28487		Exon 49	
185	COL4A5 probe 20678-L28490		Exon 2	
192	COL4A5 probe 07781-L28674		Exon 29	
197	COL4A5 probe 05873-L28675		Exon 21	
204	COL4A5 probe 06774-L28676		Exon 47	
213	Reference probe 06039-L31709	Xq13		
220	COL4A5 probe 05864-L05264		Exon 12	
234	COL4A5 probe 20679-L28728		Exon 22	
245	Reference probe 03646-L28729	Xp22		
256	COL4A5 probe 22534-L31710		Exon 3	
265	COL4A5 probe 07782-L08950		Exon 32	
270	COL4A5 probe 05875-L08951		Exon 23	
276	Reference probe 02900-L26167	Xq26		
283	COL4A5 probe 05893-L31711	·	Exon 41	
292	COL4A5 probe 05856-L31712		Exon 4	
298	COL4A5 probe 07783-L08953		Exon 33	
314	COL4A5 probe 05894-L31713		Exon 44	
325	Reference probe 07622-L31714	Xp22		
332	COL4A5 probe 05867-L31715		Exon 15	
341	Reference probe 06882-L31716	Xp22		
358	COL4A5 probe 18087-L31717	·	Exon 45	
368	COL4A5 probe 05858-L23781		Exon 6	
385	COL4A5 probe 05896-L31718		Exon 46	
391	Reference probe 03520-L02313	Xp11		
399	COL4A5 probe 05859-L05259	· · · ·	Exon 7	
420	COL4A5 probe 05888-L23100		Exon 36	
427	COL4A6 probe 05906-L23101			Exon 2
444	Reference probe 05613-L14948	Xq28		
463	COL4A5 probe 07779-L07515	· · ·	Exon 26	
476	COL4A5 probe 07778-L23669		Exon 13	
490	Reference probe 01433-L25440	Xp21		

Table 1a. SALSA MLPA Probemix P191-B4 X-linked Alport syndrome mix 1

^a See section Exon numbering on page 2 for more information.

 \pm SNP rs145970300 could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

Length (nt)	SALSA MLPA probe	Chromosomal position (hg18) ^a		
		Reference	COL4A5	COL4A6
64-105	Control fragments – see table in prob	emix content section f	or more information	
130	Reference probe 22528-L31699	Xq23		
142	COL4A5 probe 07780-L23675		Exon 27	
148	COL4A5 probe 05880-L23676		Exon 28	
154	COL4A5 probe 05889-L23677		Exon 37	
164	COL4A5 probe 05852-L31700		Exon 1	
169	COL4A5 probe 05872-L31701		Exon 20	
179	Reference probe 16678-L19251	Xp11		
184	COL4A5 probe 22529-L31702		Exon 11	
190	COL4A5 probe 05882-L08948		Exon 30	
196	COL4A5 probe 20680-L28732		Exon 50	
205	COL4A5 probe 05891-L31703		Exon 39	
211	Reference probe 05620-L05070	Xq28		
220	COL4A5 probe 05854-L05254		Exon 2	
233	COL4A5 probe 05883-L23678		Exon 31	
240	COL4A5 probe 05901-L28731		Exon 51	
247	Reference probe 07105-L06685	Xp22		
260	COL4A5 probe 06775-L31704		Exon 48	
267	COL4A5 probe 22530-L28730		Exon 13	
274	COL4A5 probe 05902-L05302		Exon 52	
283	Reference probe 04996-L04382	Xq26		
293	COL4A5 probe 05866-L05266		Exon 14	
304	COL4A5 probe 05876-L31705		Exon 24	
311	COL4A5 probe 05903-L05303		Exon 53	
317	Reference probe 03045-L01042	Xp21		
328	COL4A5 probe 05857-L05257		Exon 5	
341	COL4A5 probe 05886-L31706		Exon 34	
350	COL4A6 probe 05904-L31707			Exon 1A
358	Reference probe 13748-L31885	Хр22		
364	COL4A5 probe 20682-L28494		Exon 35	
373	COL4A5 probe 05868-L12806		Exon 16	
381	COL4A6 probe 21739-L05305			Exon 1
391	Reference probe 03520-L02313	Xp11		
406	COL4A5 probe 20683-L28495		Exon 17	
418	Reference probe 06187-L02096	Xq13		
427	COL4A5 probe 07784-L07520		Exon 38	
436	COL4A5 probe 05870-L08957		Exon 18	
444	Reference probe 22532-L22564	Xq25		

Table 1b. SALSA MLPA Probemix P192-B4 X-linked Alport syndrome mix 2

Table 2. P191/P192 probes arranged according to chromosomal location

Leng P191 F	th (nt) P192	SALSA MLPA probe	exonª	Ligation site	<u>Partial</u> sequence ^b (24 nt adjacent to ligation site)	Distance to next probe
			COL4A6	NM_033641.4		
			stop codon	5297-5299		
427		05906-L23101	Exon 2	242-243	ATTTCAGGTTGT-GGCTGCTCCTGG	0.4 kb
			start codon	227-229		
	381	21739-L05305	Exon 1	21-22	GTGCTGCAAGTT-GTAACGGGCACC	1.1 kb
				NM_001847.4; 2 nt		
	350	05904-L31707	1A	before alternative	CCCTGGGCTGCT-GGTCTTCTTTAC	0.6 kb
				exon 1A		
	1	1				1
106		05054 1 05054	COL4A5	NM_033380.3		
136		05851-L05251	Exon 1	167-168	CTCTTCACCCAA-GCCTCACTGTCC	0.2 kb
			start codon	289-291		
	164 #	05852-L31700	Exon 1	329-330	CGGCTTGTTCTT-ACTGGCCCTGAG	99.5 kb
185		20678-L28490	Exon 2	Intron 1, 63 nt before	AGTTGAGCTGTA-AGTCAGAGTCTG	0.1 kb
	220	05954105254	Evon 2	411 412		10.2 kh
256	220	03634-L03234	Exon 2	411-412		19.3 KD
200		22034-L31710	Exon 4	400-407 526 527		4.0 KU
292	220	05850-L31712	EXOIT 4	530-537		4.0 KU
260	328	05857-L05257	Exon 6	500-587		U.I KD
308		05858-L23781	Exon 7	600 601		2.0 KU
399		05859-L05259	Exon 7	090-091	CGTGGATTTCCA-GGCAGTCCCGGT	Z.I KD
140		NO probe	Exon 8	750 750		0.4.14
142		05861-L08942	Exon 9	/58-/59		2.4 KD
160 ±	104	05862-L21842	Exon IU	861-862		2.0 KD
000	184	22529-L31702	Exon 11	906-907		U.I KD
220	067	05864-L05264	Exon 12	942-943		0.2 KD
176	267	22530-L28730	Exon 13	1002-1003		0.03 KD
4/6		07778-L23669	Exon 13	1039-1040	AGAAAAGACCAA-IIGAIGIAGAGI	2.2 Kb
	293	05866-L05266	Exon 14	1080-1081	GGACIICCIGGI-GACCGAGGGCCI	0.2 KD
332	070	05867-L31715	Exon 15	1137-1138		0.3 kb
	3/3	05868-L12806	Exon 16	1207-1208	AIGGAGAAAAIG-GCCAACCAGGAA	1.9 KD
	406	20683-L28495	Exon 1/	1228-1229	TTTTAAAGGGTT-TGCCTGGTGATC	1.6 kb
1 = 0	436	058/0-L0895/	Exon 18	1296-1297	AAAGGIGACACI-GGCCCACCIGGA	2.2 Kb
150		058/1-L31/08	Exon 19	1411-1412	GAGAGCGAGGAT-TTCCTGGAATAC	4.4 kb
	169	05872-L31701	Exon 20	1489-1490	GCCCTCCTGGAT-TTCCTGGAGAAA	0.5 kb
197	-	05873-L28675	Exon 21	1656-1657	CCAGGCCCTCCA-GGCCCCCCAGGA	3.9 kb
234		20679-L28728	Exon 22	1738-1739	CTTGCTTCAACT-GCATTGGAACTG	1.5 kb
270		05875-L08951	Exon 23	1830-1831	CCTGGACAGAAA-GGGGAAAAAGGA	0.5 kb
	304	05876-L31705	Exon 24	2013-2014	CCTGGTTTACCT-GGCACTCCTGGA	3.9 kb
	-	No probe	Exon 25			
463		07779-L07515	Exon 26	2263-2264	CAGGTCAGACTA-TAACCCAGCCGG	0.6 kb
	142	07780-L23675	Exon 27	2421-2422	CTTCCTGGACCA-CCTGGTCCCAAA	1.0 kb
	148	05880-L23676	Exon 28	2463-2464	GGACCTCCAGGA-GCACCTGGGACA	3.9 kb
192		07781-L28674	Exon 29	2661-2662	CGCACTGGCTTA-GATGGGCTCCCT	8.1 kb
	190	05882-L08948	Exon 30	2709-2710	AATGGACAACCT-GGACCAATGGGA	5.4 kb
L	233	05883-L23678	Exon 31	2832-2833	AAGGGGGGATCCA-GGACCTCCTGGA	1.6 kb
265		07782-L08950	Exon 32	3051-3052	GTACCTGGTCTT-AAAGGTAATAAT	0.8 kb
298		07783-L08953	Exon 33	3086-3087	TCAGCCAGGACT-TCCTGGCCCTAC	1.6 kb
	341	05886-L31706	Exon 34	3235-3236	GGCCAAAAGGTT-ATCAGGGTTTGC	1.5 kb
	364	20682-L28494	Exon 35	3330-3331	CCTGGTCTCCCT-GGACAGCCAGGT	0.6 kb
420		05888-L23100	Exon 36	3486-3487	GGCGACAAAGGT-GATCCTGGTATT	29.1 kb
	154	05889-L23677	Exon 37	3561-3562	CCTGGATACCCA-GGGAACCCTGGT	10.2 kb

SALSA MLPA Probemixes P191 X-linked Alport syndrome mix 1 and P192 X-linked Alport syndrome mix 2 Page 7 of 10

MI PA

Lengt P191 P	th (nt) 9192	SALSA MLPA probe	exonª	Ligation site	<u>Partial</u> sequence ^b (24 nt adjacent to ligation site)	Distance to next probe
	427	07784-L07520	Exon 38	3726-3725 reverse	GGACCAGGTTCT-CCTGGAAGGCCG	1.0 kb
	205	05891-L31703	Exon 39	3763-3764	GTCATCCTGGGC-AACCAGGGCCTC	2.0 kb
		No probe	Exon 40			
283		05893-L31711	Exon 41	4038-4039	CTGGAAGGACCT-AAAGGCAACCCT	9.1 kb
		No probe				
		No probe				
314		05894-L31713	Exon 44	4119-4120	CCAGAAGGTCCT-CCAGGTCTCCCT	3.2 kb
358		18087-L31717	Exon 45	4268-4269	TGGAATGAAAGG-AGATCCTGGTCT	0.2 kb
385		05896-L31718	Exon 46	4329-4330	AGTGGAGTACCT-GGATCAGCTGGC	0.9 kb
204		06774-L28676	Exon 47	4453-4454	GAATCCCTGGCC-AGCCTGGGCTAA	4.2 kb
	260	06775-L31704	Exon 48	4530-4531	CCAGGAGATCCT-GGACGCAATGGA	1.6 kb
171		20677-L28487	Exon 49	4732-4733	ATGCACCACAAT-GCCCACAGGGAA	5.3 kb
	196	20680-L28732	Exon 50	4952-4953	GCCAATGAGCAT-GCAACCCCTAAA	2.0 kb
	240	05901-L28731	Exon 51	5025-5026	CCAGCTGTGGTG-ATCGCAGTTCAC	0.6 kb
	274	05902-L05302	Exon 52	5239-5240	ATGCCAACTCCT-ACAGCTTTTGGC	1.9 kb
			stop codon	5362-5364		
	311	05903-L05303	Exon 53	6321-6322	GAATCCTCCTGT-GGCCTCTGCTTG	

^a See section Exon numbering on page 2 for more information.

^b Only partial probe sequences are shown. Complete probe sequences are available at www.mrcholland.com. Please notify us of any mistakes: info@mrcholland.com.

This probe's specificity relies on a single nucleotide difference compared to a similar sequence located in the same chromosome. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related sequence in chromosome X.

 \pm SNP rs145970300 could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Please note: not all known SNVs are mentioned in the tables above. Single probe aberration(s) must be confirmed by another method.

Related SALSA MLPA probemixes

P439 COL4A3	Contains probes for the COL4A3 gene involved in ARAS and ADAS.
P444 COL4A4	Contains probes for the COL4A4 gene involved in ARAS and ADAS.

References

- Nozu K et al. (2017). Characterization of contiguous gene deletions in COL4A6 and COL4A5 in Alport syndrome-diffuse leiomyomatosis. J Hum Genet. Jul;62(7):733-735.
- Nozu K et al. (2019). A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol. 23:158–168.
- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. Nucleic Acids Res. 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. Hum Mutat. 28:205.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. Anal Biochem. 421:799-801.
- Zhou X et al. (2021). Clinical Manifestations of Alport Syndrome-Diffuse Leiomyomatosis Patients With Contiguous Gene Deletions in *COL4A6* and *COL4A5*. Front Med (Lausanne). 27;8:766224.

Selected publications using SALSA MLPA Probemix P191 X-linked Alport syndrome mix 1 & P192 X-linked Alport syndrome mix 2

• Aoto Y et al. (2020). A case with somatic and germline mosaicism in COL4A5 detected by multiplex ligationdependent probe amplification in X-linked Alport syndrome. CEN Case Rep; 9:431–436.

• Hadjipanagi D et al. (2022). Novel and Founder Pathogenic Variants in X-Linked Alport Syndrome Families in Greece. Genes; 13(12):2203.

• Hertz JM et al. (2008). MLPA and cDNA improves COL4A5 mutation detection in X-linked Alport syndrome. Clin Genet. 74:522-30.

• Sá MJ (2013). Deletion of the 5'exons of COL4A6 is not needed for the development of diffuse leiomyomatosis in patients with Alport syndrome. J Med Genet. 50:745-53

• Uliana et al. (2011). Alport syndrome and leiomyomatosis: the first deletion extending beyond COL4A6 intron 2. Pediatr Nephrol. 26:717-24.

• Yamamura, T et al. (2019). Comparison between conventional and comprehensive sequencing approaches for genetic diagnosis of Alport syndrome. Mol Genet Genomic Med; 7:e883.

P191 produ	P191 product history		
Version	Modification		
B4	As compared to version B3, twelve probes (eight target and four reference) had a minor alteration, no change in sequence detected and two reference probes were replaced by three new reference probes.		
B3	One reference probe has been replaced and one removed		
B2	Four reference probes have been replaced.		
B1	Several probes have been exchanged with P192 in order to minimize the generation of aspecific amplification products, especially in the no DNA control reactions.		

P192 prode	P192 product history		
Version	Modification		
B4	As compared to version B3, twelve probes (ten target and two reference) had a minor alteration, no change in sequence detected and three reference probes were replaced.		
B3	One reference probe has been replaced, and the length of several probes adjusted.		
B2	Four reference probes have been replaced.		
B1	Several probes have been exchanged with P191 in order to minimize the generation of aspecific amplification products, especially in the no DNA control reactions.		

Implemented changes in the product description

Version B4-02 - 19 May 2023 (04P)

- Product name adjusted to X-linked Alport syndrome

- Product description rewritten and adapted to a new template.

- Warning added to Table 1a and 2. indicating that SNP rs145970300 could influence the COL4A5 probe (05862-L21842) signal.

- Warning added to Table 2. for probe specificity relying on a single nucleotide difference between target gene and related gene or pseudogene.

- Removed "no probe" indication in Table 2 for exon 44.

- Sections "Related SALSA MLPA probemixes" and "Selected publications" have been updated.

Version B4-01 – 15 August 2019 (02P)

- Product description rewritten and adapted to a new template.

- Ligation sites of the probes targeting the COL4A5 and COL4A6 genes updated according to new version of the NM_ reference sequence.

More information: www.mrcholland.com; www.mrcholland.eu		
	MRC Holland bv; Willem Schoutenstraat 1	
	1057 DL, Amsterdam, The Netherlands	
E-mail	info@mrcholland.com (information & technical questions)	
	order@mrcholland.com (orders)	
Phone	+31 888 657 200	