

Product Description SALSA® MLPA® Probemix P037-B1 CLL-1

To be used with the MLPA General Protocol.

Version B2

For complete product history see page 11.

Catalogue numbers:

- **P037-025R:** SALSA MLPA Probemix P037 CLL-1, 25 reactions.
- **P037-050R:** SALSA MLPA Probemix P037 CLL-1, 50 reactions.
- P037-100R: SALSA MLPA Probemix P037 CLL-1, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mrcholland.com).

Certificate of Analysis

Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mrcholland.com.

Precautions and warnings

For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mrcholland.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information

The SALSA MLPA Probemix P037 CLL-1 is a **research use only (RUO)** assay for the detection of deletions or duplications in various genes and chromosomal regions implicated in B-cell chronic lymphocytic leukemia (B-CLL) such as: 2p (*MYCN*, *ALK*, *REL*), 6q (*TNFAIP3*), 8p (*TNFRSF10A/B*), 8q (*EIF3H*, *MYC*), 9p21 (*CDKN2A/B*), 11q (*ATM*), chromosome 12, 13q14 (*MIR15A*, *DLEU2/7*) and 17p (*TP53*).

B-CLL is the most common hematologic neoplasm in Western countries and results in the progressive accumulation of morphologically mature but functionally incompetent CD5(+) CD23(+) B lymphocytes in bone marrow, blood, spleen and lymph nodes of the affected person. Chromosomal translocations are rare events in B-CLL. Copy number changes of certain chromosomal regions are however frequent. Some of these have been found to be important prognostic markers of this disease.

The P038 CLL-2 probemix contains more probes for the 11q region and different probes for chromosome 12, 13q14 and the *TP53* gene. Moreover, it contains probes targeting the *PTEN* gene, 14q, chromosome 19, and probes specific for *NOTCH1* p.P2514*fs, *SF3B1* p.K700E and *MYD88* p.L265P point mutations. The P040 CLL probemix contains a selection of target genes and regions from P037 and P038 for the detection of copy number determination of 11q22-q23, chromosome 12, 13q14 and 17p13. Other related probemixes can be found on page 9.

More information is available at https://www.ncbi.nlm.nih.gov/books/NBK470433/

This SALSA MLPA probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/

Matched Annotation from NCBI and EMBL-EBI (MANE): http://www.ncbi.nlm.nih.gov/refseq/MANE/ Tark – Transcript Archive: http://tark.ensembl.org/

Exon numbering

The MYCN, ALK, REL, TNFAIP3, MYC, ATM, DLEU7 exon numbering in this P037-B1 product description is the exon numbering derived from MANE project (release version 1.0) based on MANE Select transcripts, as indicated in Table 2. The *TP53* exon numbering is derived from the LRG_321 sequence; the exon numbering derived from MANE project for this gene can be found in between brackets in Table 2. As changes to the databases can occur after release of this product description, the NM_ sequence and exon numbering may not be up-to-date. Please note, that in other MRC Holland product descriptions exon numbering for the same gene might differ in case other resources are indicated to have been used for exon numbering.

Probemix content

The SALSA MLPA Probemix P037-B1 CLL-1 contains 54 MLPA probes with amplification products between 130 and 500 nucleotides (nt). This includes 41 probes for 2p, 6q, 8p/q, 9p21, 11q, 12p/q, 13q and 17p chromosomal regions. In addition, 13 reference probes are included that target relatively copy number stable regions in CLL. The identity of the genes detected by the reference probes is available in Table 3. Complete probe sequences are available online (www.mrcholland.com).

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mrcholland.com.

Length (nt)	Name
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)
88-96	D-fragments (low signal indicates incomplete denaturation)
92	Benchmark fragment
100	X-fragment (X chromosome specific)
105	Y-fragment (Y chromosome specific)

MLPA technique

The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mrcholland.com). More information on the use of MLPA in tumour applications can be found in Hömig-Hölzel and Savola (2012).

MLPA technique validation

Internal validation of the MLPA technique using 16 DNA samples from healthy individuals is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens

Extracted DNA, which includes DNA derived from paraffin-embedded tissues, free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

Reference samples

A sufficient number (≥3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from different heathy individuals without a history of cancer. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol (www.mrcholland.com).

Positive control DNA samples

MRC Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is (https://catalog.coriell.org) recommended. Coriell Institute and Leibniz Institute DSMZ (https://www.dsmz.de/) have diverse collections of biological resources which may be used as positive control DNA samples in your MLPA experiments. Sample ID numbers NA00945, NA09216, NA04409, NA01353, NA01221, NA06802, NA09367, NA07994, NA03255, NA14485, NA02030, NA09888, NA03999, NA02819, NA03226, NA08618, NA09596, NA07891, NA02718, NA13721, NA14164, NA03330 and NA05832 from the Coriell Institute and SK-N-MC (ACC 203) from Leibniz Institute DSMZ have been tested with this P037-B1 probemix at MRC Holland and can be used as a positive control sample to detect copy number alterations (CNAs) of various target regions/genes. The quality of cell lines can change; therefore samples should be validated before use.

Sample name	Chromosomal position of CNA (hg18)*	Altered target genes in P037-B1	Expected copy number alteration	
Germline sar	nples from Coriell Institute			
NA00945			heterozygous deletion	
NA09216	2p24.3	MYCN	neterozygous deletion	
NA04409			heterozygous duplication	
NA01353	2p24.3-p23.2	MYCN, ALK	heterozygous duplication	
NA01221	6q21	AIM1, SEC63	heterozygous duplication	
NA06802	6q25.3-q26	IGF2R, PARK2	heterozygous deletion	
NA09367	6q21-q23.3	SEC63, TNFAIP3	heterozygous duplication	
NA07994	6q23.3-q26	TNFAIP3, LATS1, IGF2R, PARK2	heterozygous duplication	
NA03255	8p21.3	TNFRSF10B, TNFRSF10A	heterozygous duplication	
NA14485	opz1.5	INFRSFIDD, INFRSFIDA	neterozygous auplication	
NA02030	8p21.3-q24.21	TNFRSF10B, TNFRSF10A, EIF3H, MYC	heterozygous duplication	
NA09888	8q24.11	EIF3H	heterozygous deletion	
NA03999	8q24.21	МҮС	heterozygous deletion	
NA02819 ⁺	9p21.3	CDKN2A, CDKN2B	heterozygous duplication	
NA03226	9pz1.5	CDRNZA, CDRNZB	neterozygous duplication	
NA08618	11q22.3	ATM	heterozygous duplication	
NA09596	11422.3	ATM	heterozygous deletion	
NA02819 +	12q24.33	CHFR	heterozygous deletion	
NA07891	12424.33	CHFR	heterozygous duplication	
NA02718				
NA13721		DD1 ENDODA KONDO MID1EA	heterozygous deletion	
NA14164	13q14.2-q14.3	RB1, FNDC3A, KCNRG, MIR15A, DLEU2, DLEU7, ATP7B		
NA03330]	DLLOZ, DLLOI, AIFID	hotorozygouc duplication	
NA05832			heterozygous duplication	
Cancer cell li	ne sample from Leibniz In	stitute DSMZ		
	2p24.3	MYCN	ambigous [#]	
SK-N-MC [◊]	8p21.3-q24.21	TNFRSF10B, TNFRSF10A, EIF3H, MYC	gain	
	17p13.1	TP53	heterozygous deletion	

* Indicated chromosomal bands accommodate genes targeted by MLPA probes, however, the whole extent of copy number alteration (CNA) present in this cell line cannot be determined by this P037-B1 CLL-1 probemix. + CNAs are present in two target regions in this sample: 9p21.3 (*CDKN2A/B*) and 12q24.33 (*CHFR*).

◊ CNAs detected by reference probes are not reported for this sample.

Ratios between 0.65 and 0.80 found for all probes targeting *MYCN* thus indicating a potential subclonal loss.

Data analysis

Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mrcholland.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results

The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 . When this criterion is fulfilled, the following cut-off values for the final ratio (FR) of the probes can be used to interpret MLPA results for autosomal chromosomes or pseudo-autosomal regions:

Copy number status	Final ratio (FR)
Normal	0.80 < FR < 1.20
Homozygous deletion	FR = 0
Heterozygous deletion	0.40 < FR < 0.65
Heterozygous duplication/gain	1.30 < FR < 1.65
Heterozygous triplication/homozygous duplication/gain	1.75 < FR < 2.15
Ambiguous copy number	All other values

Note: The term "dosage quotient", used in older product description versions, has been replaced by "final ratio" to become consistent with the terminology of the Coffalyser.Net software. (Calculations, cut-offs and interpretation remain unchanged.) Please note that the Coffalyser.Net software also shows arbitrary borders as part of the statistical analysis of results obtained in an experiment. As such, arbitrary borders are different from the final ratio cut-off values shown here above.

Please note that these above mentioned final ratios are only valid for germline testing. Final ratios are affected both by percentage of tumour cells and by possible subclonality.

- <u>Arranging probes</u> according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in subclonal cases
- <u>False positive results</u>: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can be one cause. Incomplete DNA denaturation (e.g. due to salt contamination) can also lead to a decreased probe signal, in particular for probes located in or near a GC-rich region or in or near the *MYCN*, *CHFR and CDK4* genes. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- <u>Normal copy number variation</u> in healthy individuals is described in the database of genomic variants: <u>http://dgv.tcag.ca/dgv/app/home</u>. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- Not all abnormalities detected by MLPA are pathogenic. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- <u>Copy number changes detected by reference probes</u> or flanking probes are unlikely to have any relation to the condition tested for.
- <u>False results can be obtained if one or more peaks are off-scale</u>. For example, a duplication of one or more exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun

the PCR products using either: a lower injection voltage or a shorter injection time, or a reduced amount of sample by diluting PCR products.

P037 specific note:

 Chr6p KIAA0319 reference probe (06435-L05961) and chr6q target probes AIM1 (17481-L22106) and SEC63 (17736-L21863) are consecutive in probe length (at 427, 436 and 445 nt, respectively) and in genomic location on chromosome 6. Aberrant results detected by these probes should be treated with caution and fragment separation should be carefully examined.

Limitations of the procedure

- In most populations, the major cause of genetic defects in cancer are small (point) mutations, most of which will not be detected by using SALSA MLPA Probemix P037 CLL-1.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can cause false
 positive results. Mutations/SNVs (even when >20 nt from the probe ligation site) can reduce the probe
 signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe
 oligonucleotide to the sample DNA.
- MLPA analysis on tumour samples provides information on the average situation in the cells from which the DNA sample was purified. Gains or losses of genomic regions or genes may not be detected if the percentage of tumour cells is low. In addition, subclonality of the aberration affects the final ratio of the corresponding probe. Furthermore, there is always a possibility that one or more reference probes *do* show a copy number alteration in a patient sample, especially in solid tumours with more chaotic karyotypes.

Confirmation of results

Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

COSMIC and LOVD mutation databases

We strongly encourage users to deposit positive results in the COSMIC (http://cancer.sanger.ac.uk/cosmic) and LOVD (https://databases.lovd.nl) mutation databases. Database. Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report false positive results due to SNVs and unusual results (e.g., deletion/duplication of only one probe for *MYCN* exon 2) to MRC Holland: info@mrcholland.com.

Table 1. SALSA MLPA Probemix P037-B1 CLL-1

Length	SALSA MLPA probe				Chromoso			-		
(nt)	•	reference	2р	6q	8p/q	9р	11q	12p/q	13q	17p
64-105	Control fragments – see table in prot		nt section	for mo	re informa	tion				
130	Reference probe 00797-L19287	5q31								
136	Reference probe 13224-L14557	1p21								
142	EIF3H probe 13351-L22157				8q24.11					
	KCNRG probe 04018-L04000								13q14.3	
	Reference probe 11424-L22558	1q41								
	MYC probe 00580-L22108				8q24.21					
167	MIR15A probe 04019-L22561								13q14.3	
173	ATM probe 02644-L02111						11q22.3			
178 «	MYCN probe 03028-L21406		2p24.3							
184∫	Reference probe 01217-L18058	4q35								
190 A ¬	FNDC3A probe 17896-L22175								13q14.2	
195	DLEU2 probe 04020-L21407								13q14.3	
200	Reference probe 04827-L22160	5p13								
205 «	MYCN probe 17473-L21265		2p24.3							
211	TNFAIP3 probe 17472-L22159			6q23.3						
217	IFNG probe 00472-L21249							12q15		
223	REL probe 17474-L21266		2p16.1							
229	CDKN2B probe 16059-L18233				Q	9p21.3				
235	IGF2R probe 02798-L22562			6q25.3						
241 #	TNFRSF10B probe 17475-L21781				8 p 21.3					
	MYCN probe 17476-L22557		2p24.3		-					
	CDKN2A probe 15674-L17640				Q	9p21.3				
263 ‡	TP53 probe 02376-L21409									17p13.1
267	Reference probe 12782-L15494	2q13								
274 «	CDK4 probe 17735-L22100							12q14.1		
281	MYC probe 17477-L22565				8q24.21			-		
285 ‡	TP53 probe 02384-L21411									17p13.1
292	REL probe 17478-L21270		2p16.1							1
299	TP53 probe 17420-L21142									17p13.1
	ATP7B probe 03242-L22875								13q14.3	
312	TNFRSF10A probe 17479-L22161				8 p 21.3					
321	LRMP probe 00495-L22559							12 p 12.1		
	Reference probe 08115-L22104	11p15								
337	ATM probe 02663-L22102						11q22.3			
	Reference probe 16871-L19664	9q34								
	PARK2 probe 02182-L21780	5901		6q26						
358	CCND2 probe 00498-L21253			0420				12 p 13.32		
	MYCN probe 02572-L21412		2p24.3							
	DLEU7 probe 17480-L21272		_pe						13q14.3	
382	RB1 probe 01794-L01357								13q14.2	
391	Reference probe 07808-L22560	3p22							10414.2	
400	CHFR probe 02684-L21413	5922						12q24.33		
400	TP53 probe 02263-L01749							. 2927.00		17p13.1
409	ALK probe 08323-L08192		2p23.2							17 910.1
427	Reference probe 06435-L05961	6p22	-6-0.2							
	AIM1 probe 17481-L22106			6q21						
	SEC63 probe 17736-L21863			6q21						
451	Reference probe 05026-L22184	2q32		~~ <u>~</u> '						
	LATS1 probe 17483-L22569	2402		6q25.1						
	DLEU7 probe 03042-L21414			0YZJ. I					13q14.3	
400	Reference probe 11803-L12598	15q15							13414.3	
472	ALK probe 15397-L08194	гэцтэ	2n22.0							
			2p23.2	60000						
495	TNFAIP3 probe 17484-L21276	2-10		6q23.3						
500	Reference probe 15203-L20113	3p12								

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

- Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

 Δ More variable. This probe may be sensitive to certain experimental variations. Aberrant results should be treated with caution.

Frequent copy number alterations detected with this probe. Aberrant results should be treated with caution.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

‡ Ligation site of this probe is located on a common mutational hotspot both in germline and somatic samples as reported by the NCI TP53 Database (https://tp53.isb-cgc.org/). In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

 \pm SNP rs41303285 could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Please note: not all known SNVs are mentioned in the tables above. Single probe aberrations must be confirmed by another method.

Length (nt) SALSA MLPA probe Gene / exon^a Location/ Ligation site Partial sequence^b Location Distance to (14 min)

2p gain Gain of the short arm of chromosome 2 is a recurring chromosomal aberration in CLL. MYCN, ALK and REL oncogenes, located on 2p, are frequently gained in CLL (Jarosova et al. 2010). 2p gain is suggested to be a marker of disease progression and poor prognosis (Fabris et al. 2013, Chapiro et al. 2010).

Ligation sites for MYCN (2p24.3), ALK (2p32.2) and REL (2p16.1) probes are indicated according to MANE Select transcripts NM_005378.6, NM_004304.5 and NM_001291746.2, respectively.

_	• –	—	· · ·			
247 « ∆	17476-L22557	MYCN , exon 2	347-348	ATGCCGGGCATG-ATCTGCAAGAAC	02-016,000	0.1 kb
178 «	03028-L21406	MYCN , exon 2	470-471	TGGAAGAAGTTT-GAGCTGCTGCCC	02-016,000	3.4 kb
365 «	02572-L21412	MYCN, exon 3	1200-1201	CTGTCACCACAT-TCACCATCACTG	02-016,003	0.3 kb
205 «	17473-L21265	MYCN, exon 3	1452-1453	CGGAGGACAGTG-AGCGTCGCAGAA	02-016,003	13.3 M b
481	15397-L08194	ALK , exon 27	4906-4907	TTTCTCTTGGAT-ATATGCCATACC	02-029,274	334.5 kb
418	08323-L08192	ALK , exon 4	1909-1910	ACACCTCAGCTG-ACTCCAAGCACA	02-029,608	31.4 M b
223	17474-L21266	REL , exon 7	1034-1035	TATCACAGAACC-CGTAACAGTAAA	02-060,999	3.4 kb
292	17478-L21270	REL , exon 10	1410-1411	TCAAGCTGGTCA-TCAGTGGCCCAC	02-061,003	47.9 M b to ref probe-

6q deletion

6q deletion is associated with intermediate prognosis in CLL patients (Wang et al. 2011). 6q deletion shows atypical morphology (Cuneo et al. 2004), higher white blood cell counts and more extensive lymphadenopathy (Stilgenbauer et al. 1999). Tumour suppressor genes such as *TNFAIP3*, *LATS1* and *AIM1* (Philipp et al. 2011, Lehmann et al. 2008) have been shown to be deleted in the del6q cases.

Ligation sites for TNFAIP3 (6q23.3) probes are indicated according to MANE Select transcript NM_001270508.2.

Note: Chr6p KIAA0319 reference probe and chr6q target probes AIM1 and SEC63 (at 427, 436 and 445 nt, respectively) are consecutive in probe length and in genomic location on chromosome 6. Aberrant results detected by these probes should be treated with caution and fragment separation should be carefully examined.

17481-L22106	AIM1	6q21	CTATGACCACGG-CTTTCAGTACTT	06-107,076	1.2 M b
17736-L21863	SEC63	6q21	CAGCAGGGTGAA-ACTAACAAGAAC	06-108,321	29.9 M b
17484-L21276	TNFAIP3, exon 2	460-461	GTTCAGAACTTG-CCAGTTTTGTCC	06-138,234	9.7 kb
17472-L22159	TNFAIP3 , exon 9	2480-2481	ATCCTGGCCTGC-CGCAGCGAGGAG	06-138,244	11.8 M b
17483-L22569	LATS1	6q25.1	CAAAACCCATCT-GTTCCTCCATAC	06-150,046	10.3 M b
02798-L22562	IGF2R	6q25.3	TTCAACACAACA-GTGAGCTGTGAC	06-160,350	1.4 M b
02182-L21780	PARK2	6q26	TCTGCCGGGAAT-GTAAAGAAGCGT	06-161,728	-
	17736-L21863 17484-L21276 17472-L22159 17483-L22569 02798-L22562	17736-L21863 SEC63 17484-L21276 TNFAIP3, exon 2 17472-L22159 TNFAIP3, exon 9 17483-L22569 LATS1 02798-L22562 IGF2R	17736-L21863SEC636q2117484-L21276TNFAIP3, exon 2460-46117472-L22159TNFAIP3, exon 92480-248117483-L22569LATS16q25.102798-L22562IGF2R6q25.3	17736-L21863 SEC63 6q21 CAGCAGGGTGAA-ACTAACAAGAAC 17484-L21276 TNFAIP3, exon 2 460-461 GTTCAGAACTTG-CCAGTTTGTCC 17472-L22159 TNFAIP3, exon 9 2480-2481 ATCCTGGCCTGC-CGCAGCGAGGAG 17483-L22569 LATS1 6q25.1 CAAAACCCATCT-GTTCCTCCATAC 02798-L22562 IGF2R 6q25.3 TTCAACACAACA-GTGAGCTGTGAC	17736-L21863 SEC63 6q21 CAGCAGGGTGAA-ACTAACAAGAAC 06-108,321 17484-L21276 TNFAIP3, exon 2 460-461 GTTCAGAACTTG-CCAGTTTGTCC 06-138,234 17472-L22159 TNFAIP3, exon 9 2480-2481 ATCCTGGCCTGC-CGCAGCGAGGAG 06-138,244 17483-L22569 LATS1 6q25.1 CAAAACCCATCT-GTTCCTCCATAC 06-150,046 02798-L22562 IGF2R 6q25.3 TTCAACACAACA-GTGAGCTGTGAC 06-160,350

8p loss and 8q amplification

Loss of 8p (including *TNFRSF10A/B* genes) and amplification at 8q24 (including *MYC* oncogene) are detected in CLL (Brown et al. 2012; Rinaldi et al. 2011, Ouillette et al. 2011) with higher frequency in a subset of CLL with 17p deletion. 8p loss was

SALSA®	
MLPA®	

Length (nt)	SALSA MLPA probe	Gene / exon ^a	Location/ Ligation site	Partial sequence ^b (24 nt adjacent to ligation site)	Location (hg18) in kb	
deletions	s at 8p associate v	with resistance to alk	ylating agents an	n 17p deletion subset (Forconi et a d poor prognosis (Rinaldi et al. 201 IANE Select transcript NM_002467	1).	s at 8q and
241 #	17475-L21781	TNFRSF10B	8 p 21.3	GGTGATTGTACA-CCCTGGAGTGAC	08-022,942	196.4 kb
312	17479-L22161	TNFRSF10A	8 p 21.3	GAATCCCGGGAG-CGCAGCGAGTGG	08-023,138	94.7 M b
142	13351-L22157	EIF3H	8q24.11	TAGATGGCCTTG-TGAGTGCTGTTC	08-117,837	11.0 M b
160	00580-L22108	MYC, exon 3	1520-1521	GAACGAGCTAAA-ACGGAGCTTTTT	08-128,822	0.1 kb
281	17477-L22565	MYC, exon 3	1669-1670	AGGACTTGTTGC-GGAAACGACGAG	08-128,822	
(encomp	and CDKN2B loca assing CDKN2A/B) is relatively infreque	ent in CLL patients	involved in development of many tu (Ouillette et al. 2011; Fabris et al. 20 021 (Fabbri et al. 2013, Chigrinova e	011, Buijs et al.	
256	15674-L17640	CDKN2A	9p21.3	TCCTTTCCGTCA-TGCCGGCCCCCA	09-021,961	34.6 kb
229	16059-L18233	CDKN2B	9p21.3	GCCTGTCTGAGA-CTCACAGGAAGG	09-021,996	-
-	sites for ATM pro	bes are indicated acc ATM , exon 14	cording to MANE	Select transcript NM_000051.4.	11-107,632	16.5 kb
		AIW, CXUII 14	2321-2322		11-107,032	10.3 KD
Trisomy or favour	02663-L22102 12 12 is the third mo rable treatment re	esponse and overall		CAGCCAACATGC-GAACTTGGTGAT CLL detected in 10-20% of patien t al. 2010). Atypical lymphocyte m		
337 Trisomy Trisomy or favour some tris 358	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253	st common cytogene esponse and overall latutes et al. 1996). CCND2	reverse etic abnormality ir survival (Hallek e 12 p 13.32	n CLL detected in 10-20% of patien t al. 2010). Atypical lymphocyte m ATGCCAGTTGGG-CCGAAAGAGAGA	ts; it confers ir norphology is o 12-004,279	20.9 M b
337 Trisomy Trisomy or favour some tris 358 321	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP	reverse etic abnormality in survival (Hallek e 12 p 13.32 12 p 12.1	CLL detected in 10-20% of patien t al. 2010). Atypical lymphocyte m ATGCCAGTTGGG-CCGAAAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC	ts; it confers in norphology is o 12-004,279 12-025,152	20.9 Mb 31.3 Mb
337 Trisomy Trisomy or favour some tris 358 321 274 «	02663-L22102 12 12 is the third mo rable treatment re- somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4	reverse etic abnormality ir survival (Hallek e 12 p 13.32 12 p 12.1 12 q 14.1	CLL detected in 10-20% of patien t al. 2010). Atypical lymphocyte m ATGCCAGTTGGG-CCGAAAGAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428	20.9 Mb 31.3 Mb 10.4 Mb
337 Trisomy or favour some tris 358 321 274 « 217	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG	reverse etic abnormality ir survival (Hallek e 12 p 13.32 12 p 12.1 12q14.1 12q15	CLL detected in 10-20% of patien t al. 2010). Atypical lymphocyte m ATGCCAGTTGGG-CCGAAAGAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835	20.9 Mb 31.3 Mb
337 Trisomy or favour some tris 358 321 274 « 217 400	02663-L22102 12 12 is the third mo rable treatment re- somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4	reverse etic abnormality ir survival (Hallek e 12 p 13.32 12 p 12.1 12 q 14.1	CLL detected in 10-20% of patien t al. 2010). Atypical lymphocyte m ATGCCAGTTGGG-CCGAAAGAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428	20.9 Mb 31.3 Mb 10.4 Mb
337 Trisomy or favour some tris 358 321 274 « 217 400 13q14 de Interstitia well as Palamara abnorma et al. 20 deletion s	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413 eletion al deletion at 13q1 the <i>RB1</i> gene, a chuk et al. 2010) lity also with the h 11, Parker et al. 2 size.	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG CHFR 4 is the most commo re important tumou . Deletion of 13q14 highest overall surviva 2011). Therefore, pro	reverse etic abnormality in survival (Hallek e 12p13.32 12p12.1 12q14.1 12q15 12q24.33 on (~50%) chromor r suppressor car represents a CL al. The 13q14 dele bes in two flankin	ATGCCAGTTGGG-CCGAAAGAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC GACATGCCCTTT-ACAGACTGGGGA osomal aberration in CLL. The <i>DLEU</i> ndidates within 13q14 deletion re L group with the best prognosis, tion size is shown to indicate differ ng regions (<i>FNDC3A</i> and <i>ATP7B</i>) a	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835 12-131,959 <i>U/miR15A/16-</i> egion (Klein e and when it ential prognos	20.9 Mb 31.3 Mb 10.4 Mb 65.1 Mb - Cluster, as t al. 2010, is the sole is (Ouillette
337 Trisomy or favour some tris 358 321 274 « 217 400 13q14 de Interstitia well as Palamaro abnorma et al. 207 deletion s	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413 eletion al deletion at 13q1 the <i>RB1</i> gene, a chuk et al. 2010) lity also with the h 11, Parker et al. 2 size. numbering of <i>DL</i>	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG CHFR 4 is the most commo re important tumou . Deletion of 13q14 sighest overall surviva 2011). Therefore, pro EU7 is according to N	reverse etic abnormality in survival (Hallek e 12p13.32 12p12.1 12q14.1 12q15 12q24.33 on (~50%) chrom- r suppressor can represents a CL al. The 13q14 dele bes in two flankin	ATGCCAGTTGGG-CCGAAAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC GACATGCCCTTT-ACAGACTGGGGA cosomal aberration in CLL. The <i>DLEU</i> ndidates within 13q14 deletion re L group with the best prognosis, tion size is shown to indicate differ ng regions (<i>FNDC3A</i> and <i>ATP7B</i>) a	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835 12-131,959 <i>U/miR15A/16-7</i> egion (Klein e and when it ential prognos are included to	20.9 Mb 31.3 Mb 10.4 Mb 65.1 Mb - Cluster, as t al. 2010, is the sole is (Ouillette define the
337 Trisomy or favour some tris 358 321 274 « 217 400 13q14 de Interstitia well as Palamaro abnorma et al. 207 deletion s The exon 382	02663-L22102 12 12 is the third mo rable treatment re- somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413 eletion al deletion at 13q1 the <i>RB1</i> gene, a chuk et al. 2010) lity also with the h 11, Parker et al. 2 size. numbering of <i>DL</i> 01794-L01357	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG CHFR 4 is the most commo re important tumou . Deletion of 13q14 sighest overall surviva 2011). Therefore, pro EU7 is according to N RB1	reverse etic abnormality in survival (Hallek e 12p13.32 12p12.1 12q14.1 12q15 12q24.33 on (~50%) chrom- r suppressor can represents a CL al. The 13q14 dele bes in two flankin MANE Select trans 13q14.2	ATGCCAGTTGGG-CCGAAAGAGAGA ATGCCAGTTGGG-CCGAAAGAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC GACATGCCCTTT-ACAGACTGGGGA cosomal aberration in CLL. The <i>DLEU</i> didates within 13q14 deletion ro L group with the best prognosis, tion size is shown to indicate differ ng regions (<i>FNDC3A</i> and <i>ATP7B</i>) a script NM_001306135.2.	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835 12-131,959 U/miR15A/16-1 egion (Klein e and when it ential prognos are included to 13-047,936	20.9 Mb 31.3 Mb 10.4 Mb 65.1 Mb - 7 cluster, as t al. 2010, is the sole is (Ouillette o define the 667.7 kb
337 Trisomy or favour some tris 358 321 274 « 217 400 13q14 de Interstitia well as Palamarca abnorma et al. 207 deletion s The exon 382 190 Δ ¬	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413 eletion al deletion at 13q1 the <i>RB1</i> gene, a chuk et al. 2010) lity also with the h 11, Parker et al. 2 size. numbering of <i>DL</i>	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG CHFR 4 is the most commo re important tumou . Deletion of 13q14 highest overall surviva 2011). Therefore, pro EU7 is according to N RB1 FNDC3A	reverse etic abnormality in survival (Hallek e 12p13.32 12p12.1 12q14.1 12q15 12q24.33 on (~50%) chromor r suppressor car represents a CL al. The 13q14 dele bes in two flankin MANE Select trans 13q14.2 13q14.2	ATGCCAGTTGGG-CCGAAAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC GACATGCCCTTT-ACAGACTGGGGA cosomal aberration in CLL. The <i>DLEU</i> adidates within 13q14 deletion re L group with the best prognosis, tion size is shown to indicate differ ng regions (<i>FNDC3A</i> and <i>ATP7B</i>) a script NM_001306135.2.	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835 12-131,959 U/miR15A/16- egion (Klein e and when it ential prognos are included to 13-047,936 13-048,603	20.9 Mb 31.3 Mb 10.4 Mb 65.1 Mb - 7 cluster, as t al. 2010, is the sole is (Ouillette define the 667.7 kb 889.3 kb
337 Trisomy Trisomy or favour some tris 358 321 274 « 217 400 13q14 de Interstitia well as Palamarca abnorma et al. 207 deletion s The exon 382 190 $\Delta \neg$ 148	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413 eletion al deletion at 13q1 the <i>RB1</i> gene, a chuk et al. 2010) lity also with the h 11, Parker et al. 2 size. numbering of <i>DL</i> 01794-L01357 17896-L22175 04018-L04000	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG CHFR 4 is the most commo re important tumou . Deletion of 13q14 ighest overall surviva 2011). Therefore, pro EU7 is according to N RB1 FNDC3A KCNRG	reverse etic abnormality in survival (Hallek e 12p13.32 12p12.1 12q14.1 12q15 12q24.33 on (~50%) chromo r suppressor can represents a CL al. The 13q14 dele bes in two flankin MANE Select trans 13q14.2 13q14.3	ATGCCAGTTGGG-CCGAAAGAGAGA ATGCCAGTTGGG-CCGAAAGAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC GACATGCCCTTT-ACAGACTGGGGA cosomal aberration in CLL. The <i>DLEU</i> didates within 13q14 deletion ro L group with the best prognosis, tion size is shown to indicate differ ng regions (<i>FNDC3A</i> and <i>ATP7B</i>) a script NM_001306135.2.	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835 12-131,959 <i>U/miR15A/16-</i> egion (Klein e and when it ential prognos are included to 13-047,936 13-048,603 13-049,493	20.9 Mb 31.3 Mb 10.4 Mb 65.1 Mb - Cluster, as t al. 2010, is the sole is (Ouillette define the 667.7 kb 889.3 kb 28.5 kb
337 Trisomy Trisomy or favour some tris 358 321 274 « 217 400 13q14 de Interstitian well as Palamarca abnorma et al. 207 deletion s The exon 382 190 $\Delta \neg$ 148 167	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413 eletion al deletion at 13q1 the <i>RB1</i> gene, a chuk et al. 2010) lity also with the h 11, Parker et al. 2 size. numbering of <i>DL</i> 01794-L01357 17896-L22175 04018-L04000 04019-L22561	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG CHFR 4 is the most commo re important tumou . Deletion of 13q14 sighest overall surviva 011). Therefore, pro EU7 is according to N RB1 FNDC3A KCNRG MIR15A	reverse etic abnormality in survival (Hallek e 12p13.32 12p12.1 12q14.1 12q15 12q24.33 on (~50%) chrom- r suppressor can represents a CL al. The 13q14 dele bes in two flankin MANE Select trans 13q14.2 13q14.3 13q14.3	ATGCCAGTTGGG-CCGAAAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC GACATGCCTTT-ACAGACTGGGGA osomal aberration in CLL. The <i>DLEU</i> ndidates within 13q14 deletion re L group with the best prognosis, tion size is shown to indicate differ ng regions (<i>FNDC3A</i> and <i>ATP7B</i>) a script NM_001306135.2. TTTTGTTCTTA-AACACACTTTGG CGCCTCCACCAC-GTCATATGTACT GCTTAAGCCATA-ATGCCTGCTGCT TGGATTTTGAAA-AGGTGCAGGCCA	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835 12-131,959 U/miR15A/16-1 egion (Klein e and when it ential prognos are included to 13-047,936 13-048,603 13-049,493 13-049,521	20.9 Mb 31.3 Mb 10.4 Mb 65.1 Mb - - - - - - - - - - - - - - - - - - -
337 Trisomy or favour some tris 358 321 274 « 217 400 13q14 de Interstitia well as Palamarca abnorma et al. 207 deletion s The exon 382 190 $\Delta \neg$ 148	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413 eletion al deletion at 13q1 the <i>RB1</i> gene, a chuk et al. 2010) lity also with the h 11, Parker et al. 2 size. numbering of <i>DL</i> 01794-L01357 17896-L22175 04018-L04000	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG CHFR 4 is the most commo re important tumou . Deletion of 13q14 ighest overall surviva 2011). Therefore, pro EU7 is according to N RB1 FNDC3A KCNRG	reverse etic abnormality in survival (Hallek e 12p13.32 12p12.1 12q14.1 12q15 12q24.33 on (~50%) chromo r suppressor can represents a CL al. The 13q14 dele bes in two flankin MANE Select trans 13q14.2 13q14.3	ATGCCAGTTGGG-CCGAAAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC GACATGCCCTTT-ACAGACTGGGGA osomal aberration in CLL. The <i>DLEU</i> ndidates within 13q14 deletion re L group with the best prognosis, tion size is shown to indicate differ ng regions (<i>FNDC3A</i> and <i>ATP7B</i>) a script NM_001306135.2. TTTTGTTCTTTA-AACACACTTTGG CGCCTCCACCAC-GTCATATGTACT GCTTAAGCCATA-ATGCCTGCTGCT	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835 12-131,959 <i>U/miR15A/16-</i> egion (Klein e and when it ential prognos are included to 13-047,936 13-048,603 13-049,493	20.9 Mb 31.3 Mb 10.4 Mb 65.1 Mb - Cluster, as t al. 2010, is the sole is (Ouillette define the 667.7 kb 889.3 kb 28.5 kb
337 Trisomy Trisomy or favour some tris 358 321 274 « 217 400 13q14 de Interstitia well as Palamarc abnorma et al. 20° deletion s The exon 382 190 $\Delta \neg$ 148 167 195	02663-L22102 12 12 is the third mo rable treatment re somy 12 cases (M 00498-L21253 00495-L22559 17735-L22100 00472-L21249 02684-L21413 eletion al deletion at 13q1 the <i>RB1</i> gene, a chuk et al. 2010) lity also with the h 11, Parker et al. 2 size. numbering of <i>DL</i> 01794-L01357 17896-L22175 04018-L04000 04019-L22561 04020-L21407	st common cytogene esponse and overall latutes et al. 1996). CCND2 LRMP CDK4 IFNG CHFR 4 is the most commo re important tumou . Deletion of 13q14 ighest overall surviva 2011). Therefore, pro EU7 is according to N RB1 FNDC3A KCNRG MIR15A DLEU2	reverse etic abnormality in survival (Hallek e 12p13.32 12p12.1 12q14.1 12q15 12q24.33 on (~50%) chromor r suppressor can represents a CL al. The 13q14 delet bes in two flankin MANE Select trans 13q14.2 13q14.3 13q14.3 13q14.3 13q14.3 13q14.3 13q14.3	ATGCCAGTTGGG-CCGAAAGAGAGA GTCTCTAGAACA-TATCTTGTGGCC TCTCTGAGGCTA-TGGAGGGTCCTC GATGGCTGAACT-GTCGCCAGCAGC GACATGCCGTA-TGGAGGGTCCTC GACATGCCCTTT-ACAGACTGGGGA osomal aberration in CLL. The <i>DLEU</i> ndidates within 13q14 deletion re L group with the best prognosis, tion size is shown to indicate differ ng regions (<i>FNDC3A</i> and <i>ATP7B</i>) a script NM_001306135.2. TTTTGTTCTTTA-AACACACTTTGG CGCCTCCACCAC-GTCATATGTACT GCTTAAGCCATA-ATGCCTGCTGCT TGGATTTTGAAA-AGGTGCAGGCCA	ts; it confers in norphology is of 12-004,279 12-025,152 12-056,428 12-066,835 12-131,959 U/miR15A/16-7 egion (Klein e and when it ential prognos are included to 13-047,936 13-048,603 13-049,493 13-049,521 13-049,554	20.9 Mb 31.3 Mb 10.4 Mb 65.1 Mb - - - - - - - - - - - - - - - - - - -

17p deletion

17p deletions are detected in 5-10% of newly diagnosed CLL resulting in a loss of TP53 tumour suppressor gene at 17p13.1. Del(17p) and also TP53 mutations are associated with a more aggressive clinical course, worse prognosis and short overall survival, and belong to ultra-high risk CLL (Mougalian and O'Brien 2011). TP53 deletion/mutations predict no response to treatment with purine analogues and are thus important for therapy selection (Stilgenbauer and Zenz 2010, Schetelig et al. 2008, Dreger et al. 2010).

Length (nt)	SALSA MLPA probe	Gene / exon ^a	Location/ Ligation site	Partial sequence ^b (24 nt adjacent to ligation site)	Location (hg18) in kb	Distance to next probe
Ligation sites for TP53 (17p13.1) probes are indicated according to MANE Select transcript NM_000546.6. The <i>TP53</i> exon numbering is derived from the LRG_321 sequence; the exon numbering derived from MANE project according to NM_000546.6 for this gene can be found in between brackets.						
285‡	02384-L21411	TP53 , exon 7 (8)	981-982	CTGTCCTGGGAG-AGACCGGCGCAC	17-007,518	1.4 kb
263 ‡	02376-L21409	TP53 , exon 4b (5)	546-547	CAAGATGTTTTG-CCAACTGGCCAA	17-007,519	0.8 kb
299	17420-L21142	TP53 , exon 3 (4)	451-450 reverse	TAGCTGCCCTGG-TAGGTTTTCTGG	17-007,520	11.6 kb
409	02263-L01749	TP53 , exon 1 (upstream)	127 nt before exon 1	CTTCCTCCGGCA-GGCGGATTACTT	17-007,532	-

^a See section Exon numbering on page 2 for more information.

^b Only partial probe sequences are shown. Complete probe sequences are available at www.mrcholland.com. Please notify us of any mistakes: info@mrcholland.com.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

- Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

 Δ More variable. This probe may be sensitive to certain experimental variations. Aberrant results should be treated with caution. # This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

‡ Ligation site of this probe is located on a common mutational hotspot both in germline and somatic samples as reported by the NCI TP53 Database (https://tp53.isb-cgc.org/). In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

Table 3. P037-B1 reference	probes arranged accordi	ng to chromosomal location

Length (nt)	SALSA MLPA probe	Gene	Location (hg18)	Location (hg18) in kb
136	13224-L14557	COL11A1	1p21	01-103,234
154 ±	11424-L22558	USH2A	1q41	01-213,981
267	12782-L15494	EDAR	2q13	02-108,913
451	05026-L22184	COL3A1	2q32	02-189,573
391	07808-L22560	SCN5A	3p22	03-038,625
500	15203-L20113	GBE1	3p12	03-081,775
184∫	01217-L18058	KLKB1	4q35	04-187,390
200	04827-L22160	NIPBL	5p13	05-036,997
130	00797-L19287	IL4	5q31	05-132,038
427	06435-L05961	KIAA0319	6p22	06-024,653
344	16871-L19664	COL5A1	9q34	09-136,799
328	08115-L22104	ABCC8	11p15	11-017,406
472	11803-L12598	SPG11	15q15	15-042,647

Frequent copy number alterations detected with this probe. Aberrant results should be treated with caution.

 \pm SNP rs41303285 could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Please note: not all known SNVs are mentioned in the tables above. Single probe aberrations must be confirmed by another method.

Related SALSA MLPA probemixes

P038 CLL-2	contains probes for 11q, 12p/q, 13q14, <i>TP53 & PTEN</i> genes and probes specific for <i>NOTCH1</i> p.P2514*fs, <i>SF3B1</i> p.K700E and <i>MYD88</i> p.L265P point mutations
P040 CLL	contains probes for 11q, 12p/q, 13q14 and TP53
P041 and P042 ATM	contain probes for all ATM exons on 11q
P056 TP53	contains probes for all TP53 exons
P047 RB1	contain more probes for 13q14 (<i>RB1</i>).

P252 NB mix 2	contains more probes for the 2p region	
P323 CDK4-HMGA2-MDM2	contains more probes for chromosome 12	
P377 Hematologic Malignancies	contains more probes for 6q, 8q, 9p, 11q, 12p/q, 13q14 and TP53	

References

- Brown JR et al. (2012) Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia. *Clin Cancer Res.* 18:3791-802.
- Buijs A et al. (2006) Detection of risk-identifying chromosomal abnormalities and genomic profiling by multiplex ligation-dependent probe amplification in chronic lymphocytic leukemia. *Haematologica*. 91:1434-5.
- Chapiro E et al. (2010) Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. *Leuk Res.* 34:63-8.
- Chigrinova E et al. (2013) Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. *Blood.* 122:2673-82.
- Cuneo A et al. (2004) Chronic lymphocytic leukemia with 6q- shows distinct hematological features and intermediate prognosis. *Leukemia*. 18:476-83.
- Döhner H et al. (1997) 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. *Blood.* 89:2516-22.
- Dreger P et al. (2010) Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. *Blood.* 116:2438-47.
- Fabbri G et al. (2013) Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. *J Exp Med.* 210:2273-88.
- Fabris S et al. (2011) Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in chronic lymphocytic leukemia: a comparative study. *Genes Chromosomes Cancer.* 50:726-34.
- Fabris S et al. (2013) Chromosome 2p gain in monoclonal B-cell lymphocytosis and in early stage chronic lymphocytic leukemia. *Am J Hematol.* 88:24-31.
- Forconi F et al. (2008) Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. *Br J Haematol*. 143:532-6.
- Guarini A et al. (2012) ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. *Haematologica*. 97:47-55.
- Hallek M et al. (2010) Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. *Lancet.* 376:1164-74.
- Hömig-Hölzel C and Savola S (2012) Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. *Diagn Mol Pathol*. 21:189-206.
- Jarosova M et al. (2010) Gain of chromosome 2p in chronic lymphocytic leukemia: significant heterogeneity and a new recurrent dicentric rearrangement. *Leuk Lymphoma*. 51:304-13.
- Klein U et al. (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. *Cancer Cell*. 17:28-40.
- Lehmann S et al. (2008) Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. *Cancer.* 112:1296-305.
- Matutes E et al. (1996) Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. *Br J Haematol.* 92:382-8.
- Mougalian SS and O'Brien S (2011) Adverse prognostic features in chronic lymphocytic leukemia. Oncology (Williston Park) 25:692-6, 699.
- Neilson JR et al. (1997) Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. *Leukemia*. 11:1929-32.
- Ouillette P et al. (2011) Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. *Blood.* 118:3051-61.
- Palamarchuk A et al. (2010) 13q14 deletions in CLL involve cooperating tumor suppressors. *Blood*. 115:3916-22.
- Parker H et al. (2011) 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. *Leukemia*. 25:489-97.
- Philipp C et al. (2011) Mutation analysis of the TNFAIP3 (A20) tumor suppressor gene in CLL. *Int J Cancer*. 128:1747-50.
- Rinaldi A et al. (2011) Genome-wide DNA profiling better defines the prognosis of chronic lymphocytic leukaemia. *Br J Haematol.* 154:590-9.

- Schetelig J et al. (2008) Allogeneic hematopoietic stem-cell transplantation for chronic lymphocytic leukemia with 17p deletion: a retrospective European Group for Blood and Marrow Transplantation analysis. *J Clin Oncol.* 26:5094-100.
- Schouten JP et al. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007) Deletion of exon 16 of the dystrophin gene is not associated with disease. *Human mutation.* 28:205.
- Stilgenbauer S and Zenz T et al. (2010). Understanding and managing ultra high-risk chronic lymphocytic leukemia. *Hematology Am Soc Hematol Educ Program*. 2010:481-8.
- Stilgenbauer S et al. (1999). Incidence and clinical significance of 6q deletions in B cell chronic lymphocytic leukemia. *Leukemia*. 13:1331-4.
- Varga RE et al. (2012) MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.
- Wang DM et al. (2011) Intermediate prognosis of 6q deletion in chronic lymphocytic leukemia. *Leuk Lymphoma*. 52:230-7.

Selected publications using SALSA MLPA Probemix P037 CLL-1

- Al Zaabi EA et al. (2010) Multiplex ligation-dependent probe amplification versus multiprobe fluorescence in situ hybridization to detect genomic aberrations in chronic lymphocytic leukemia: a tertiary center experience. *J Mol Diagn.* 12:197-203.
- Bakrania P et al. (2007) SOX2 anophthalmia syndrome: 12 new cases demonstrating broader phenotype and high frequency of large gene deletions. *Br J Ophthalmol*. 91:1471-6.
- Coll-Mulet L et al. (2008) Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. *Br J Haematol*. 142:793-801.
- Fabris S et al. (2011) Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in chronic lymphocytic leukemia: a comparative study. *Genes Chromosomes Cancer.* 50:726-34.
- Gángó, A et al. (2022) Morphologic and molecular analysis of Richter syndrome in chronic lymphocytic leukaemia patients treated with ibrutinib or venetoclax. *Pathology*. 54:95–103.
- Groenen PJTA et al. (2011) High prevalence of adverse prognostic genetic aberrations and unmutated IGHV genes in small lymphocytic lymphoma as compared to chronic lymphocytic leukemia. *Journal of Hematopathology*. 4:189-97.
- Nardinelli L et al. (2021) Compariosn between multiplex ligation-dependent probe amplification (MLPA) and cytogenetics validation of chromosomal aberrations in chronic lymphocytic leukemia. *Hematology*, *Transfusion and Cell Therapy*. 43, S423–S424.
- Rendeiro AF et al. (2016) Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtypespecific epigenome signatures and transcription regulatory networks. *Nat Commun.* 7:11938.
- Simonin M et al (2023). Prognostic value and oncogenic landscape of TP53 alterations in adult and pediatric T-ALL. *Blood.* 141:1353-8.
- Stevens-Kroef M et al. (2009) Identification of chromosomal abnormalities relevant to prognosis in chronic lymphocytic leukemia using multiplex ligation-dependent probe amplification. *Cancer Genet Cytogenet*. 195:97-104.
- Stevens-Kroef MJ et al. (2014) Identification of prognostic relevant chromosomal abnormalities in chronic lymphocytic leukemia using microarray-based genomic profiling. *Mol Cytogenet*. 7:3.
- Torabi K et al. (2019) Quantitative analysis of somatically acquired and constitutive uniparental disomy in gastrointestinal cancers. *Int J Cancer.* 144:513-24.
- Vèronèse L et al. (2013) Contribution of MLPA to routine diagnostic testing of recurrent genomic aberrations in chronic lymphocytic leukemia. *Cancer Genet.* 206:19-25.

P037 product history	
Version	Modification
B1	13 target probes have been replaced and 12 new ones added. Moreover, 10 reference probes have been replaced and 2 new ones included. In addition, the 88 and 96 nt control fragments have been replaced (QDX2).
A2	Extra control fragments at 88-96-100-105 nt have been added.
A1	First release.

Implemented changes in the product description	on
Version B1-02 – 06 April 2023 (04P)	
- Product description rewritten and adapted to	a new template.
- TP53 database name and hyperlink change in	the footnotes of Table 1 and 2.
- Ligation sites of the probes targeting the REL,	TNFAIP3, MYC, ATM and TP53 genes are updated
according to recent MANE select NM_ transcri	pts.
- Exon numbering updated and ligation site info	
- New references added in 'Selected publicatio page 11.	ns using SALSA MLPA Probemix P037 CLL-1' section on
- Added footnote about variable results for MY	CN probe 17476-L22557 in Table 1 and 2.
- Added footnote about SNP on DNA target for	Reference probe 11424-L22558 in Table 1 and 3.
- Removed P098 from the list of related prober	nixes, and added P377 probemix on page 10.
Version B1-01 — 23 January 2020 (02P)	
- Product description rewritten and adapted to	
 Product description separated from P038 pro 	bemix description.
- Various minor textual or layout changes.	
 Ligation sites of the probes targeting the MYC to new version of the NM_ reference sequence 	CN, ALK, REL, TNFAIP3 and MYC genes updated according .
- Warning added to Table 1 for probe specificit gene and related gene or pseudogene.	y relying on a single nucleotide difference between target
- Notification added about data interpretation of probes AIM1 (17481-L22106) and SEC63 (1773)	of KIAA0319 reference probe (06435-L05961) and target 36-L21863) on page 4 and in Table 2a.
	d bands in this document are now all based on hg18
Version 23 – 03 January 2018 (T08)	
- Changed the name for NOTCH1 c.7544-7545 accurately reflect the location of the ligation si	delCT probe to c.7541-7542delCT in table 3b to more te.
- Various minor textual changes.	

- Various minor textual changes.

More information: www.mrcholland.com; www.mrcholland.eu	
	MRC Holland bv; Willem Schoutenstraat 1 1057 DL, Amsterdam, The Netherlands
E-mail	info@mrcholland.com (information & technical questions) order@mrcholland.com (orders)
Phone	+31 888 657 200