

Product Description SALSA[®] MLPA[®] Probemix P211-B5 HSP region

To be used with the MLPA General Protocol.

Version B5. As compared to version B4, three reference probes have been replaced. For complete product history see page 7.

Catalogue numbers:

- P211-025R: SALSA MLPA Probemix P211 HSP region, 25 reactions.
- P211-050R: SALSA MLPA Probemix P211 HSP region, 50 reactions.
- **P211-100R:** SALSA MLPA Probemix P211 HSP region, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mlpa.com).

Certificate of Analysis: Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mlpa.com.

Precautions and warnings: For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mlpa.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information: The SALSA MLPA Probemix P211 HSP region is a **research use only (RUO)** assay for the detection of deletions or duplications in the *SPAST* gene and other genes located in the 2p22.3 region and 15q11.2 region, which are associated with Hereditary spastic paraplegias (HSPs).

HSPs are a large and diverse group of genetically heterogeneous neurodegenerative disorders characterised by progressive lower limb/lower extremity spasticity and weakness. Defects in the *SPAST* gene (also known as *SPG4*) on chromosome 2p22 are identified as one of the causes for autosomal dominant pure HSP. The protein encoded by this gene is spastin which is involved in membrane shaping and modelling events.

This probemix contains probes for the first exon and intron and probes for exon 16 and 17 of the *SPAST* gene and the flanking regions of *SPAST* (2p22.3 region). This probemix furthermore contains probes for the *NIPA1* gene (also known as *SPG6*) and probes for the nearby genes of *NIPA1*, such as the *WHAMML1* and *HERC2P2* genes (15q11.2 region). Probes for these flanking genes of *NIPA1* have been included to distinguish *NIPA1* defects from larger deletions in the Prader-Willi/Angelman syndrome region. The database of genomic variants mentions several copy number changes in this genomic region that have been found in healthy individuals (see http://dgv.tcag.ca/dgv/app/home).

This SALSA MLPA Probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/

Exon numbering: The *SPAST* exon numbering used in this P211-B5 HSP region product description is the exon numbering from the RefSeq transcript NM_014946.3, which is identical to the LRG_714 sequence. The exon numbering and NM_ sequence used have been retrieved on 06/2019. As changes to the NCBI database can occur after release of this product description, exon numbering may not be up-to-date.

Probemix content: The SALSA MLPA Probemix P211-B5 HSP region contains 39 MLPA probes with amplification products between 128 and 462 nucleotides (nt). This includes 13 probes for the 2p22.3 region,

including probes for the *SPAST* gene. This probemix furthermore contains 13 probes for the 15q11.2 region, which encompasses the *NIPA1, NIPA2, WHAMML1*, and *HERC2P2* genes. In addition, 13 reference probes are included that detect autosomal chromosomal locations. Complete probe sequences and the identity of the genes detected by the reference probes are available online (www.mlpa.com).

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, one chromosome X, and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mlpa.com.

Length (nt)	Name	
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)	
88-96	D-fragments (low signal of 88 nt and 96 nt fragment indicates incomplete denaturation)	
92	Benchmark fragment	
100	X-fragment (X chromosome specific)	
105	Y-fragment (Y chromosome specific)	

MLPA technique: The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mlpa.com).

MLPA technique validation: Internal validation of the MLPA technique using 16 DNA samples from healthy individuals is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all reference probes over the experiment.

Required specimens: Extracted DNA free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

Reference samples: A sufficient number (\geq 3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from unrelated individuals who are from families without a history of Hereditary spastic paraplegias. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol.

Positive control DNA samples: MRC-Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/home.html) have a diverse collection of biological resources which may be used as a positive control DNA sample in your MLPA experiments. The quality of cell lines can change; therefore samples should be validated before use.

Data analysis: Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mlpa.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results: The standard deviation of each individual reference probe over all the reference samples should be ≤ 0.10 and the dosage quotient (DQ) of each individual reference probe in the patient samples should be between 0.80 and 1.20. When these criteria are fulfilled, the following cut-off values for the DQ of the probes can be used to interpret MLPA results for autosomal chromosomes or pseudo-autosomal regions:

Copy number status	Dosage quotient
Normal	0.80 < DQ < 1.20
Homozygous deletion	DQ = 0
Heterozygous deletion	0.40 < DQ < 0.65
Heterozygous duplication	1.30 < DQ < 1.65
Heterozygous triplication/Homozygous duplication	1.75 < DQ < 2.15
Ambiguous copy number	All other values

- Arranging probes according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in mosaic cases. Analysis of parental samples may be necessary for correct interpretation of complex results.
- False positive results: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Incomplete DNA denaturation (e.g. due to salt contamination) can lead to a decreased probe signal, in particular for probes located in or near a GC-rich region. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- Normal copy number variation in healthy individuals is described in the database of genomic variants: http://dgv.tcag.ca/dgv/app/home. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- Not all abnormalities detected by MLPA are pathogenic. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- Copy number changes detected by reference probes or flanking probes are unlikely to have any relation to the condition tested for.
- When running MLPA products, the capillary electrophoresis protocol may need optimization. False results can be obtained if one or more peaks are off-scale. For example, a duplication of one or more exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun the PCR products using either: lower injection voltage / injection time settings, or a reduced amount of sample by diluting PCR products.

Limitations of the procedure:

- In most populations, the major cause of genetic defects in the *SPAST* gene are small (point) mutations, most of which will not be detected by using SALSA MLPA Probemix P211 HSP region.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNPs, point mutations, small indels) in the target sequence detected by a probe can cause false positive results. Mutations/SNPs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.

Confirmation of results: Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

SPAST mutation database: https://databases.lovd.nl/shared/genes/SPAST. We strongly encourage users to deposit positive results in the Leiden Open Variation database (LOVD). Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report copy number changes detected by the reference probes, false positive results due to SNPs and unusual results to MRC-Holland: info@mlpa.com.

Longth (nt)	SALSA MLPA probe	Chromosomal position (hg18) ^a		
Length (nt)		Reference	2p22.3 region	15q11.2 region
64-105	Control fragments – see table in prober	nix content section fo	r more information	
128	Reference probe 00797-L00093	5q31		
133	HERC2P2 probe 09878-L22208			Exon 23
139	SPAST probe 05659-L22209		Exon 1	
148 *	Reference probe 04445-L03831	4q13		
154	GOLGA6L2 probe 09873-L10285			Exon 7
166 *	Reference probe 16058-L18232	9p21		
173	SPAST probe 07128-L06737		Exon 17	
179 «	WHAMML1 probe 09875-L12280			Exon 2
184	Reference probe 02312-L01803	19p13		
190	SPAST probe 08262-L08125		Upstream	
196 Ø	SPAST probe 08263-L08126		Intron 1	
202	NIPA2 probe 07123-L05171			Exon 8
214	NIPA2 probe 05767-L05718			Exon 4
220	Reference probe 02947-L02379	7q31		
226 Ø	SPAST probe 08264-L08127		Intron 1	
235	SPAST probe 05265-L04648		Exon 1	
241	SPAST probe 05658-L05111		Exon 17	
256	Reference probe 06007-L05432	2q36		
265	NIPA1 probe 07124-L05206			Exon 5
274	Reference probe 05360-L04739	11p13		
292	Reference probe 08790-L11322	10q21		
299	SPAST probe 07127-L06736		Exon 1	
314	GOLGA6L2 probe 09874-L12277			Exon 8
320 « ¬	DPY30 probe 07130-L12278		Exon 5	
328 *	Reference probe 16583-L18726	12q24		
337 ¬	SLC30A6 probe 07132-L06741		Exon 12	
346	TUBGCP5 probe 01321-L12279			Exon 8
355 ¬	DPY30 probe 07129-L06738		Exon 2	
364	Reference probe 10675-L11257	6p12		
382	CYFIP1 probe 01818-L01317			Exon 23
391	NIPA1 probe 07125-L05755			Exon 3
400	Reference probe 05343-L04730	1p21		
409	MAGEL2 probe 11155-L11839			Exon 1
418	NIPA2 probe 05117-L04501			Exon 10
428	HERC2P2 probe 09877-L11168			Exon 13
436	SPAST probe 08261-L22286		Upstream	
445	SPAST probe 20720-L28598		Exon 16	
454	Reference probe 01051-L00620	8q21		
462	Reference probe 18948-L01619	13q13		

Table 1. SALSA MLPA Probemix P211-B5 HSP region

a) See above section on exon numbering for more information.

* New in version B5.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \neg Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

Ø Intron probe. Only included to help determine the extent of a deletion/duplication. Copy number alterations of only this probe are of unknown clinical significance.

Table 2. P211-B5 probes arranged according to chromosomal location Table 2a, 2p22.3 region

Length	SALSA MLPA	SPAST	Ligation site	<u>Partial</u> sequence ^b (24 nt	Distance to
(nt)	probe	exon ^a	NM_014946.3	adjacent to ligation site)	next probe
220	07120 112270	DPY30	NM_032574.3;		154.66
320 ¬	0/130-L122/8	Exon 5	677-678.	TTTTGGATGTAT-AAGAACCTTCCG	15.4 KD
255	07120 106720	DPY30	NM_032574.3; 2 nt		22.0. kh
ר ככנ	0/129-L00/38	Exon 2	before exon 2.	TCTTGTTTTCCA-AGACTGGTATCC	22.0 KD
		start codon	222-224 (Exon 1)		
436	08261-L22286	Upstream	1349 nt before exon 1	TGTGGAGATTCT-TGGAAGCTGGAA	0.5 kb
190	08262-L08125	Upstream	881 nt before exon 1	TCATTAGAATAC-AGGGAGCAGAGA	0.7 kb
299	07127-L06736	Exon 1	178 nt before exon 1	AACTGCACATTG-GGAACTGTAGTT	0.4 kb
139	05659-L22209	Exon 1	226-227	GCTGTGAATGAA-TTCTCCGGGTGG	0.1 kb
235	05265-L04648	Exon 1	378-379	ACCTGTACTATT-TCTCCTACCCGC	1.7 kb
196 Ø	08263-L08126	Intron 1	1410 nt after exon 1	CCTCTGCCAAAA-ACACCCACTTTT	14.9 kb
226 Ø	08264-L08127	Intron 1	6932 nt before exon 2	GTCATAGAGTTA-AAAGAGAAATGT	66.7 kb
445	20720-L28598	Exon 16	1921-1922	ACTAAAACCAGA-ACAGGTGAAGAA	7.2 kb
241	05658-L05111	Exon 17	2031-2032	CTTTAGAAGCGT-ACATACGTTGGA	1.9 kb
173	07128-L06737	Exon 17	3961-3962	TAGCCATAAGGT-AAATCATGTCTC	48.2 kb
		stop codon	2070-2072 (Exon 17)		
227	07122 106741	SLC30A6	NM_017964.5;	TOOTATACOTAT TOOCTTOATOAC	
33/ - 0/132	0/132-L00/41	Exon 12	741-742	IGCIAIAGCIAI-IGCCIIGAIGAC	

Table 2b. 15q11.2 region

Length (nt)	SALSA MLPA probe	Gene/exon ^a	Ligation site	<u>Partial</u> sequence ^b (24 nt adjacent to ligation site)	Distance to next probe
346	01321-L12279	TUBGCP5 Exon 8	NM_052903.6; 793-794.	CAGTGATCCATT-GTATGTTCCAGA	122.3 kb
382	01818-L01317	CYFIP1 Exon 23	NM_014608.5; 2586-2587	CTGTTGGAAATC-AACCGCATGACC	36.4 kb
418	05117-L04501	<i>NIPA2</i> Exon 10	NM_001184889.1; 2568-2569	TGAGCATTCGAT-GGCCTTAGCACC	8.9 kb
202	07123-L05171	<i>NIPA2</i> Exon 8	NM_001184889.1; 1079-1080	GTGGCCAACTTC-GCTGCGTATGCG	13.3 kb
214	05767-L05718	<i>NIPA2</i> Exon 4	NM_001184889.1; 614-615	TCTGAGAATAGT-GAAGCAACTCAT	21.4 kb
265	07124-L05206	<i>NIPA1</i> Exon 5	NM_144599.4; 627-628	GCTGGGCAGTTT-CACCGTGCCTTC	11.7 kb
391	07125-L05755	<i>NIPA1</i> Exon 3	NM_144599.4; 272-273	GCCAGATTGGAA-ACTTCCTGGCTT	144.3 kb
179 #	09875-L12280	WHAMML1 Exon 2	NR_003521.1; 612-613	TTCAAGGACACC-GAAAAGCCAACA	106.4 kb
133 #	09878-L22208	HERC2P2 Exon 23	NR_002824.3; 3506-3507	GCCCAGTTAGAT-GACTACTTCCCT	15.1 kb
428 #	09877-L11168	HERC2P2 Exon 13	NR_002824.3; 1780-1781	TACTGTTACAGA-TGTTCACAAATA	358.1 kb
314 #	09874-L12277	GOLGA6L2 Exon 8	NM_001304388.1; 2976-2977	AAGAGAAAGATG-AAGATCATCAAT	2.2 kb
154 #	09873-L10285	GOLGA6L2 Exon 7	NM_001304388.1; 735-736	AGGAGCTGAAGA-AGAAAAATGCCG	202.1 kb
409	11155-L11839	MAGEL2 Exon 1	NM_019066.4; 3692-3693	AGCAAGATGCTT-GTCCTGAGGTTT	

a) See above section on exon numbering for more information.

b) Only partial probe sequences are shown. Complete probe sequences are available at www.mlpa.com. Please notify us of any mistakes: info@mlpa.com.

 \neg Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

 \emptyset Intron probe. Only included to help determine the extent of a deletion/duplication. Copy number alterations of only this probe are of unknown clinical significance.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

Related SALSA MLPA probemixes

P165 HSP	Contains probes for the SPG3A and SPAST genes.
P213 HSP mix-2	Contains probes for the <i>REEP1</i> and <i>SPG7</i> genes.
P306 SPG11	Contains probes for the SPG11 gene.

References

- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Hum Mutat.* 28:205.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.

Selected publications using SALSA MLPA Probemix P211 HSP region

- De Leva MF et al. (2010). Complex phenotype in an Italian family with a novel mutation in SPG3A. J. Neurol., 257(3), 328-331.
- Dong EL et al. (2018). Clinical spectrum and genetic landscape for hereditary spastic paraplegias in China. *Mol. Neurodegener. 13*(1), 36.
- Mészárosová AU et al. (2016). SPAST mutation spectrum and familial occurrence among Czech patients with pure hereditary spastic paraplegia. *J. Hum. Genet.*, *61*(10), 845.

P211 Product history		
Version	Modification	
B5	Three reference probes have been replaced.	
B4	Four reference probes have been replaced, five flanking probes have been removed and one length has been adjusted.	
B3	Three reference probes have been replaced, one removed and the 88 and 96 nt control fragments have been replaced (QDX2).	
B2	Seven probes in the 15q11 region between the <i>NIPA</i> genes and <i>MKRN3</i> have been added. Two DD (DNA Denaturation) control fragments at 88 and 96 nt have been added.	
A1	First release.	

Implemented changes in the product description

Version B5-01 — 02 July 2019 (02P)

- Product description rewritten and adapted to a new template.
- Product description adapted to a new product version (version number changed, changes in Table 1 and Table 2).
- Ligation sites of the probes targeting the *SLC30A6, TUBGCP5,* and *CYFIP1* genes updated according to new versions of the NM_ reference sequences.
- Warning added to Table 2b for probe specificity relying on a single nucleotide difference between target gene and related gene or pseudogene.

Version 16 - 27 October 2016 (55)

- Product description adapted to a new product version (version number changed, lot number added, small changes in Table 1 and Table 2, new picture included).
- New references added on page 1.
- Various minor textual and layout changes.

- Exon numbering of *NIPA1*, *CYPIP1* and *GOLGA6L2* genes adjusted.

Version 15 (53)

- Remark added under table 2 about two *HERC2P2* probes that seem to be frequently deleted.
- Figure 1 Capillary electrophoresis pattern generated with old MLPA buffer has been removed.
- "Peak area" replaced with "peak height".
- Updated link for "Database of Genomic Variants".
- Corrected text on data analysis.

More information: www.mlpa.com; www.mlpa.eu			
	MRC-Holland bv; Willem Schoutenstraat 1 1057 DL, Amsterdam, The Netherlands		
E-mail	info@mlpa.com (information & technical questions); order@mlpa.com (orders)		
Phone	+31 888 657 200		